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A B S T R A C T

The fusion of molecular-scale engineering in nanotechnology with machine learning (ML) analytics is reshaping 
the field of precision medicine. Nanoparticles enable ultrasensitive diagnostics, targeted drug and gene delivery, 
and high-resolution imaging, whereas ML models mine vast multimodal datasets to optimize nanoparticle design, 
enhance predictive accuracy, and personalize treatment in real-time. Recent breakthroughs include ML-guided 
formulations of lipid, polymeric, and inorganic carriers that cross biological barriers; AI-enhanced nano-
sensors that flag early disease from breath, sweat, or blood; and nanotheranostic agents that simultaneously track 
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and treat tumors. Comparative insights into Retrieval-Augmented Generation and supervised learning pipelines 
reveal distinct advantages for nanodevice engineering across diverse data environments. An expanded focus on 
explainable AI tools, such as SHAP, LIME, Grad-CAM, and Integrated Gradients, highlights their role in 
enhancing transparency, trust, and interpretability in nano-enabled clinical decisions. A structured narrative 
review method was applied, and key ML model performances were synthesized to strengthen analytical clarity. 
Emerging biodegradable nanomaterials, autonomous micro-nanorobots, and hybrid lab-on-chip systems promise 
faster point-of-care decisions but raise pressing questions about data integrity, interpretability, scalability, 
regulation, ethics, and equitable access. Addressing these hurdles will require robust data standards, privacy 
safeguards, interdisciplinary R&D networks, and flexible approval pathways to translate bench advances into 
bedside benefits for patients. This review synthesizes the current landscape, critical challenges, and future di-
rections at the intersection of nanotechnology and ML in precision medicine.

1. Introduction

The interplay between machine learning (ML) and nanotechnology, 
which is principally based on the combination of data-driven intelli-
gence with molecular-level accuracy to improve healthcare outcomes, 
diagnosis, and treatment, has revolutionized the field of precision 
medicine. The sequencing of the human genome initially increased the 
demand for rapid progress in clinical medicine by facilitating more 
precise therapeutics through an understanding of the genetic basis of 
illnesses [1]. The expression the right care, for the right patient, at the 
right time is frequently used to characterize individualized strategies for 
the prevention and treatment of diseases that consider individual vari-
ations in genetics, environment, and lifestyle [2]. Precision medicine 
indicates a transition from disease treatment to individualized patient 
care using a data-driven, tailored methodology facilitated by de-
velopments in big data and omics. It incorporates many types of data, 
including genomic, epigenetic, environmental, lifestyle, and medical 
history data, to develop a virtual patient model. Predictive modeling 
utilizing these interactions seeks to identify or forecast diseases, deliver 
accurate diagnoses, and improve treatment optimization to emphasize 
accuracy, cost-effectiveness, and swiftness, with a focus on individual-
ized healthcare solutions [3,4].

Moreover, the incorporation of modern technologies, including 
nanotechnology, is crucial for the complete realization of the promise of 
precision medicine. Nanotechnology involves manipulating materials to 
exploit the unique physical and chemical properties that emerge at the 
nanoscale (1–100 nm). These properties differ significantly from those 
of bulk materials, allowing for innovative applications in various fields 
[5], including precision medicine. The capacity to design nanoparticles, 
nanocarriers, and nanosensors for interaction with biological systems at 
the molecular level continues to drive advancements in personalized 
medicine [6]. The significance of nanotechnology in healthcare lies in its 
ability to transform diagnostics, drug delivery, and therapies by 
providing remarkable accuracy in targeting specific cells, tissues, or 
disease pathways. Metallic nanoparticles, including gold (AuNPs), silver 
(AgNPs), iron (FeNPs), and polymeric variants, have been thoroughly 
investigated for their diagnostic capabilities in precision medicine, 
enabling accurate assessment of patient-specific genes and supporting 
high-precision diagnoses and tailored treatment strategies [7].

Similarly, the extensive implementation of precision medicine has 
been significantly improved by recent advances, including computa-
tional methods such as artificial intelligence (AI) for managing and 
analyzing large datasets. Therefore, ML, a subset of AI, can assist in 
various stages of precision medicine, including data collection, meta-
bolic phenotyping, patient stratification, and the establishment of tar-
geted or combination therapies, while minimizing side effects and 
implications, thus significantly lowering healthcare expenditures 
[8–10]. For instance, an AI approach for genome sequence analysis 
attained high accuracy in disease classification by employing a 
gene-based screening technique utilizing ML algorithms that efficiently 
distinguished between pneumonia and COVID-19 [4]. Furthermore, ML 
algorithms such as Support Vector Machines (SVM), Random Forests, 
and DL techniques, including Convolutional Neural Networks (CNN) 

[11], have been successful in diagnosing diseases such as diabetic reti-
nopathy and cardiovascular conditions by analyzing medical imaging 
data [12]. This extends to clinical decision support systems, where al-
gorithms predict patient outcomes by continuously learning from new 
data, which is particularly valuable in resource-limited settings. In 
addition, DL models such as K-Nearest Neighbors (KNN) have been 
effectively used to analyze voice samples to detect disease, showcasing 
the versatility of ML across different types of patients. It has also been 
observed that artificial neural networks (ANN) have good effects on 
predicting heart diseases [13]. Multiple Linear Regression, Decision 
Tree Regression, Random Forest Regression and Support Vector 
Regression algorithms can detect early signs of epidemics by identifying 
patterns in health data, enabling timely interventions, and reducing the 
spread of diseases such as dengue and chikungunya. This review ex-
plores the integration of nanotechnology and ML in the evolution of 
precision medicine, emphasizing their current applications and under-
scoring their transformative potential for improving disease diagnosis, 
treatment, and patient satisfaction. It also addresses the limitations and 
ethical implications of their implementation in clinical settings.

2. Methodology

An extensive narrative review was conducted using the Scopus, 
PubMed, and Google Scholar databases, along with targeted searches 
from trustworthy online sources, to identify relevant studies on nano-
technology, machine learning, and precision medicine. These databases 
were chosen because of their comprehensive scope, citation features, 
and emphasis on scientific literature. Web of Science (WoS) and Embase 
were omitted because of subscription limitations, overlap with Scopus, 
and discipline-specific restrictions of the other databases. A total of 131 
articles were assessed in this review. The Boolean operators "AND" and 
"OR" were used to generate detailed search queries such as: ("nano-
technology") AND ("machine learning") AND ("precision medicine OR 
personalized medicine"). To ensure uniformity and a thorough compi-
lation of pertinent articles, these search terms were consistently applied 
across all databases. Eligible papers included original research, sys-
tematic and narrative reviews, meta-analyses, viewpoints, commen-
taries, and gray literature. Although no specific publication timeframe 
was imposed, studies published in the last ten years written in English 
were prioritized. Exclusions were made for Publications not in English, 
those without full-text access, and those that did not align with the 
study’s objectives were excluded. A snowballing bibliometric approach 
was employed to identify additional relevant literature. All articles were 
assessed for quality, favoring studies that are often cited and have strong 
methodologies. Studies with poor methods or lacking data were 
excluded. Considering the scope of this narrative review, only articles 
pertinent to the research goals were considered. The findings were 
critically analyzed and organized in a narrative format under appro-
priate subheadings.
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3. Applications of nanotechnology and machine learning in 
precision medicine

3.1. Diagnostics and early detection

Nanosensors possess the capability to detect biomarkers at very low 
concentrations, facilitating the diagnosis of diseases such as cancer 
through markers such as CA 15–3, HER2, BRCA1/2, CEA, and CYFRA 
21–1, as well as neurological disorders via markers such as β-amyloid 
and Tau Protein Levels, EEG alterations, and Thyroid Hormone Levels 
(T3, T4) [Table 1] [14]. Additionally, nanosensors use materials such as 
gold nanoparticles and graphene to detect biomarkers at previously 
undetectable concentrations, thereby improving the early detection of 
diseases [15].

For example, one study found that gold nanoparticles (NPs) can 
detect viral infections caused by Flaviviridae, Coronaviridae, Herpes-
viridae, and Orthomyxoviridae [16]. The same study reported the 
detection of viruses, such as Human Immunodeficiency Virus (HIV), 
Hepatitis B Virus (HBV), Hepatitis C Virus (HCV), and Respiratory 
Syncytial Virus (RSV), as well as bacteria, such as E. coli and M. 
tuberculosis, using quantum dots (QDs). Furthermore, silver nano-
clusters and carbon dots can be used to detect pathogen DNA and 

Gram-positive bacteria (GPB), respectively [17]. Microbubbles are also 
used in ultrasonic imaging for tumor detection [18].

Moreover, the early and accurate detection of infectious diseases and 
neurological disorders using nanotechnology has been enhanced by ML 
[19,20], where complex datasets from nanodevices are processed using 
ML algorithms [14]. Techniques such as decision trees and neural net-
works have demonstrated superior performance in identifying cancer 
subtypes and predicting treatment responses [21]. Additionally, weakly 
supervised transfer learning can create personalized models to predict 
tumor characteristics based on limited patient data, facilitating the 
development of customized treatment strategies [22]. Therefore, the 
combination of ML with nanosensor data allows for real-time analysis 
and personalized treatment plans, significantly improving patient out-
comes [21,23].

3.2. Personalized drug delivery

Nanoparticles are increasingly recognized for their potential as tar-
geted drug delivery systems. They enhance therapeutic efficacy while 
minimizing side effects by carrying and releasing therapeutic agents at 
specific target sites within the body (Table 1) [24]. The distinct char-
acteristics of nanoparticles, including their size, surface charge, and 
functionalization, contribute to improved permeability and retention 
(EPR) effects, which are advantageous for targeting cancerous tissues 
(Table 2). For example, nanoscale polysaccharide derivatives used as 
carriers for small interfering RNA (siRNA) have shown potential in os-
teosarcoma treatment, illustrating the capability of nanoparticles to 
enable the targeted delivery of genetic therapies. Furthermore, actively 
targeted nanomedicines have been developed to improve therapeutic 
efficacy using ligands that specifically bind to cancer cell markers, 
thereby improving the precision of drug delivery [25]. Therefore, the 
design of these nanoparticles can be tailored to improve their in-
teractions with biological systems, such as through the engineering of 
lipid-based, polymeric, and inorganic nanoparticles, which allows the 

Table 1 
Applications of nanotechnology and machine learning in precision medicine.

Application Area Key Features & 
Technologies

Examples & Outcomes

Diagnostics & 
Early 
Detection

• Nanosensors for ultralow 
biomarker detection

• ML algorithms (DL, KNN, 
Random Forest) for 
prediction

• Gold nanoparticles, QDs, 
graphene for viral & 
bacterial detection

• Detection of cancer, 
neurological & infectious 
diseases

• Improved diagnostic 
accuracy using ML + nano- 
biosensors

Personalized 
Drug Delivery

• Nanocarriers for targeted 
delivery (e.g., lipid, 
polymeric, inorganic)

• AI for drug design & 
optimization- Controlled 
& sustained release

• Enhanced bioavailability of 
drugs like Olaparib

• Reduced systemic toxicity in 
cancer & autoimmune 
therapy

Advanced 
Imaging 
Techniques

• Nanoparticles as contrast 
agents in MRI, PET, CT

• AI for image analysis and 
tumor tracking- 
Theranostic nanoprobes

• Real-time tumor monitoring
• Enhanced precision in cancer 

detection and therapy

Real-Time 
Patient 
Monitoring

• Nanosensors for 
physiological tracking (e. 
g., glucose, HR 
variability)

• AI prediction of health 
risks Customizable 
wearable devices

• Early intervention and 
preventive care Personalized 
monitoring of chronic 
conditions

Gene Therapy & 
Editing

• Nanoparticles for CRISPR 
delivery

• ML to reduce off-target 
effects

• Tools like CRISPR for 
prediction

• Increased safety and 
precision of gene editing

• Improved delivery and 
efficacy of gene therapy

Biomedical 
Applications

• ML models for 
nanomaterial toxicity 
prediction

• Wearables, voice-to-text, 
gesture control

• ML for gas/pollutant/ 
biomarker detection

• Real-time environmental & 
health monitoring

• Safer nanomaterial 
development & advanced 
HMI (human-machine 
interface) technologies

Case Studies • AI-integrated 
nanosensors in sweat, 
breath, saliva, blood

• Nanosensor arrays, QDs, 
transistor sensors

• Deep learning for lesion 
detection

• Early cancer diagnosis (e.g., 
VOC detection)

• Brain metastasis detection 
with 98.7 % accuracy

• AIoT systems for smart 
healthcare

Table 2 
Comparison of conventional and ML-Driven nanomedical approaches.

Domain Conventional Nanomedicine ML-Driven Nanomedicine

Diagnostics & 
Early 
Detection

Utilizes nanosensors (e.g., 
gold NPs, QDs) to detect 
biomarkers (e.g., CA15-3, 
BRCA1/2) at low 
concentrations.

ML algorithms (e.g., DL, RF, 
SVM) predict tumor 
characteristics, personalize 
diagnostics, and analyze 
nanosensor data in real time.

Personalized 
Drug Delivery

Nanocarriers (e.g., 
liposomes, siRNA-based NPs) 
for targeted delivery to 
improve bioavailability and 
reduce toxicity.

ML models analyze omics 
data to optimize drug 
targeting, predict responses, 
and design adaptive drug 
release mechanisms.

Advanced 
Imaging

Nanoparticles as contrast 
agents in MRI, CT, and PET 
scans; static imaging 
applications.

ML enables real-time analysis 
of imaging data (e.g., PET, 
MRI), enhances diagnostic 
accuracy, and supports 
treatment response 
monitoring.

Real-Time 
Patient 
Monitoring

Nanosensors used to measure 
vitals (e.g., glucose, HR) 
continuously; basic data 
interpretation.

AI-powered nanosensors 
predict disease events (e.g., 
cardiac episodes), tailor 
interventions based on 
dynamic data.

Gene Therapy & 
Editing

Nanoparticles used to deliver 
CRISPR components for gene 
editing; basic targeting.

ML predicts off-target effects, 
refines CRISPR delivery, and 
enhances precision in 
genomic applications (e.g., 
CRISPOR tools).

Biomedical 
Applications

Wearable nanosensors for 
basic health and 
environmental monitoring; 
toxicity assessed via 
traditional assays.

ML predicts nanomaterial 
toxicity, optimizes wearable 
interface designs (e.g., 
QLEDs), and supports real- 
time environmental 
diagnostics.
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customization of drug release profiles and targeting mechanisms, which 
is crucial for achieving personalized treatment. [26]. In addition, 
nanocarriers are designed to transport drugs to specific cells or tissues, 
thereby improving treatment precision. They are often used to enhance 
the solubility and stability of drugs, improve their bioavailability, and 
allow for controlled and sustained release [24].

Moreover, the application of nanotechnology in drug delivery sys-
tems has been shown to significantly enhance the therapeutic index of 
anticancer agents, thereby reducing systemic toxicity and improving 
patient compliance [27]. Olaparib (Ola) is an anticancer agent that 
functions by inhibiting poly (ADP-ribose) polymerase (PARP), a critical 
enzyme involved in DNA damage repair. The drug exhibits poor ab-
sorption in the gastrointestinal tract (GIT) owing to its physicochemical 
characteristics, which restrict its efficacy and therapeutic potential. 
However, encapsulating it in a liposphere, a nanoparticle delivery 
technology, mitigates these problems by enhancing the drug’s solubility 
and stability and facilitating its passage through the GIT more effi-
ciently. Additionally, encapsulation improves the oral bioavailability of 
the medicine, resulting in a higher percentage of the drug entering 
systemic circulation, thereby enhancing its therapeutic efficacy [28]. In 
autoimmune diseases, nanotechnology facilitates the targeted delivery 
of immunomodulatory agents, which can be tailored to the specific 
immune profiles of patients, thus improving treatment outcomes and 
reducing side effects [29].

Moreover, by analyzing omics data, such as genomes, metabolomics, 
and proteomics, ML algorithms can identify biomarkers associated with 
disease pathways and therapeutic outcomes, which aids in guiding the 
choice of the most effective drug targets and therapeutic strategies [19,
30]. Additionally, nanoparticle delivery efficiency to tumors can be 
predicted using ML algorithms such as DL, linear regression, K-nearest 
neighbors, and random forest. ML-developed nanoparticle-based for-
mulations, such as Vyxeos and Hensify, work synergistically to combine 
active pharmaceutical ingredients for improved therapeutic results [31,
32]. The analysis of the microenvironment, where ML and nanotech-
nology describe tumor development, metastasis, and response to ther-
apy, has enabled more efficient and personalized care [33]. AI-powered 
nanomedicine devices that enable real-time drug administration, phar-
macokinetics, and therapeutic response monitoring are equally impor-
tant, as they facilitate customizable therapy regimens and improve 
patient outcomes [34]. For example, DNA logic circuits have been used 
to create responsive nanomedicines that can adjust their therapeutic 
actions based on specific biomarkers present in tumors, thus enhancing 
the precision of cancer therapy [35]. This enables the creation of 
intelligent drug delivery systems that can dynamically respond to 
changes in the tumor microenvironment.

3.3. Advanced imaging techniques

Nanotechnology has revolutionized imaging modalities by providing 
enhanced contrast agents and imaging probes that improve the sensi-
tivity and specificity of magnetic resonance imaging (MRI), computed 
tomography (CT), and positron emission tomography (PET) [36], 
thereby allowing more precise imaging of tumors and other pathological 
conditions. For example, superparamagnetic iron oxide nanoparticles 
have been used to enhance MRI contrast, allowing better visualization of 
tumor margins. When combined with theragnostic nanoprobes, this 
yields simultaneous imaging and targeted therapy [35–37].

Moreover, ML is transforming brain tumor screening and detection 
by collecting image features such as structure, grayscale, and texture, 
and using classifiers such as random forests, SVM, and KNN to enhance 
efficiency and accuracy [32,38]. For example, ML techniques have been 
used to analyze data from PET scans, allowing the identification of 
metabolic changes associated with tumor progression or response to 
therapy [39,40]. Furthermore, ML can improve the interpretation of 
multimodal imaging data from nanodevices by integrating information 
from various imaging techniques to provide a comprehensive view of the 

disease status. This capability is particularly valuable in oncology, 
where the combination of imaging modalities can produce a more ac-
curate assessment of the tumor burden and treatment response. By 
automating imaging data analysis, ML algorithms can reduce the time 
required for interpretation and improve the consistency of diagnostic 
assessments, ultimately leading to better outcomes. Therefore, the 
combination of nanomaterials and AI in imaging not only improves the 
detection of malignancies but also aids in monitoring treatment re-
sponses, making it a crucial component of personalized medicine.

3.4. Real-time patient monitoring

The combination of nanotechnology and ML for real-time patient 
monitoring marks a significant step forward in precision medicine. 
Nanodevices, including nanosensors, are being developed for ongoing 
physiological surveillance, which enables the live tracking of vital signs 
and biochemical indicators. These devices can identify molecular-level 
changes and provide essential data for clinical decision making [41,
42]. For instance, nanosensors can track glucose levels in patients with 
diabetes or identify disease biomarkers, facilitating prompt intervention 
[43]. In addition, ML algorithms can process large amounts of data 
generated by these nanodevices, identify patterns, and predict potential 
health problems before they become critical [44,45]. For example, AI 
systems can analyze trends in heart rate variability to predict cardiac 
events, thus facilitating preventive measures [46].

3.5. Gene therapy and editing

In gene therapy and editing, nanoparticles play a crucial role in 
providing gene-editing tools, such as CRISPR-Cas9 (Table 1). These 
nanoparticles can encapsulate CRISPR components, improving their 
stability and facilitating targeted delivery to specific cells and tissues 
[47,48]. This targeted approach minimizes off-target effects, which are a 
significant concern in gene editing [49]. Furthermore, ML is instru-
mental in guiding target identification and reducing off-target effects in 
gene editing by analyzing genomic data [50]. For example, tools such as 
CRISPR use ML to assess the likelihood of off-target events, thereby 
providing researchers with valuable insights that improve the safety and 
effectiveness of gene editing [51]. This synergy between nanotech-
nology and ML advances the capabilities of gene therapy and ensures a 
higher degree of precision and safety in clinical applications [52].

3.6. Biomedical fields

ML models help predict the cytotoxicity of nanomaterials, ensuring 
their safe application. Large datasets on nanomaterial toxicity are used 
to train ML models, such as LightGBM and Random Forests, guiding 
regulatory efforts and predicting safe-by-design nanomaterials [53]. 
Additionally, ML models are increasingly used to design sensitive and 
selective NM-based sensors for detecting gases, pollutants, and bio-
markers, achieving rapid and accurate public and environmental 
monitoring and risk assessments [54]. Moreover, ML-driven research on 
quantum dots and triboelectric nanogenerators is pushing the bound-
aries of wearable human-machine interfaces, including ML-optimized 
quantum dot-based light-emitting diodes (QLEDs), voice-to-text con-
version devices for hearing aids, and gesture-controlled interfaces for 
remote device operation [55].

4. Case studies of nanotechnology and ML in precision medicine

Several studies have highlighted the transformative role of nano-
sensors in early and noninvasive disease detection. Gupta and Basu 
showed how effective nanosensors can be in the early identification of 
diseases [56]. They created nanosensors that can identify illnesses 
without visible signs by mimicking immune responses. These sensors 
can track tumor growth, detect organ implant contamination, and 
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identify biomarkers. This innovation holds promise for applications in 
drug delivery systems, personalized healthcare, and early disease diag-
nosis. Saylan et al. explored non-invasive nanosensors that can identify 
biomolecules in bodily fluids, such as tears, saliva, and sweat, offering 
high sensitivity, portability, and low cost. The integration of ML has 
enhanced these sensors for real-time diagnostics, health status 

monitoring, and the identification of markers for various conditions 
[57].

Furthermore, Sahi and Kaushik explored the combination of AI, IoT, 
and nanotechnology to create AIoT systems that enhance medical de-
vices and operations, while improving data management and medical 
robotics when used alongside nanotechnology [56]. By combining metal 

Fig. 1. Synergistic workflow of machine-learning-driven nanotechnology for precision medicine.
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oxide nanostructures with protein nanocatalysts, Kim et al. improved 
the accuracy of breath analysis, a noninvasive diagnostic tool that uses 
chemical-resistant respiratory sensors. ML can detect disease biomarkers 
at very low concentrations, making it a promising technology for the 
early diagnosis of conditions such as cancer and respiratory diseases 
[58]. Yang et al. developed functional, fast-response time, and specific 
transistor sensors for detecting diseases such as cancer, viral infections, 
toxins, and injury markers, making them effective in clinical settings. 
ML plays a critical role in interpreting and analyzing data from these 
sensors, allowing precise and rapid clinical decision-making [59]. 
Another study by Palaniyandi et al. focused on the use of nanosensors to 
diagnose and treat neurodegenerative diseases such as Alzheimer’s 
disease and inflammatory bowel disease [60]. Rabbani et al. explored 
the use of nanomaterials, such as carbon nanotubes, graphene, and 
nanoparticles, to develop flexible biosensors for medical diagnostics, 
offering reliable and multidimensional performance in disease detection 
[61]. Mujawar et al. also investigated advanced biosensor technologies 
using nanotechnology to identify disease biomarkers at extremely low 
concentrations, enabling early detection of conditions like cancer and 
infectious diseases and timely interventions [62].

Furthermore, Noah and Ndangili developed point-of-care nano-
sensors for disease diagnosis, allowing rapid disease detection at the 
patient’s location [63]. Yaari et al. developed an optical nanosensor 
array combined with ML for protein marker detection in biological 
fluids, achieving high accuracy and cost-effectiveness [64]. Moreover, 
Peng et al. used a nanosensor array to detect volatile organic compounds 
(VOCs) in the breath, distinguishing between healthy individuals and 
those with various types of cancer. By incorporating ML, these methods 
have been refined to identify cancer types with higher precision, offering 
a non-invasive, cost-effective, and early diagnostic tool for various 
cancers [65]. For small lesions, deep learning algorithms designed by 
Madhugiri et al. demonstrated a sensitivity of 79.2 % and a positive 
predictive value of 95.6 %, outperforming manual identification [66]. 
By attaining a sensitivity and accuracy of 97.5 % and 98.7 %, respec-
tively, Huang et al. considerably improved AI performance and estab-
lished a new standard for the diagnosis of brain metastases [67].

5. Emerging trends and innovations

The synergistic potential of nanotechnology and ML approaches 
presents [Fig. 1] opportunities in critical areas of innovation, including 
hybrid nanotech-ML platforms, predictive and preventive medicine, 
accelerated drug discovery, and regenerative medicine, with substantial 
contributions from scientific research and technological breakthroughs 
[68].

5.1. Hybrid nanotech-ML platforms

Hybrid platforms that combine nanotechnology and ML have rede-
fined the precision of diagnostics and therapeutics. These systems inte-
grate nanobiosensors with embedded AI processors to enable real-time 
data collection, processing, and decision-making [19]. For instance, 
through the combination of mass spectrometry and SVM-based feature 
selection, Wang et al. were able to identify important lipid biomarkers 
for the early detection of lung cancer, with a sensitivity and specificity of 
over 90 % and 92 %, respectively [69]. Hollon et al. also presented 
DeepGlioma, an AI-powered rapid screening tool trained on multimodal 
datasets in the field of glioma diagnostics, allowing for the rapid iden-
tification of molecular changes using methods such as stimulated Raman 
histology [70].

The ability to embed AI capabilities directly into nanotechnology- 
based platforms is particularly promising in resource-limited settings, 
where access to specialized diagnostic tools is scarce. ML-enhanced 
nanosensors have shown significant potential for the noninvasive 
monitoring of glucose levels in patients with diabetes, which is a critical 
advancement in the management of chronic diseases [71]. Additionally, 

advancements in standard hematological tests have demonstrated their 
potential in cancer identification. Using ML and plasma degradation 
profiling, Tsvetkov et al. differentiated patients with glioma from 
healthy individuals with an accuracy of 92 % [72]. Another example of 
the expanding potential of AI and nanotechnology-driven diagnostics 
was demonstrated by Podnar et al., where ML applied to routine blood 
tests could compete with neuroimaging in brain tumor screening. [73]. 
Therefore, these integrated systems exemplify the power of convergent 
technologies in addressing various health needs [74].

5.2. Predictive and preventive medicine

Nanotechnology and ML have significantly advanced disease pre-
diction, diagnosis, and environmental monitoring, particularly during 
the COVID-19 pandemic, enabling a shift from reactive to proactive 
healthcare through predictive approaches. DL approaches using recur-
rent neural networks and long short-term memory (LSTM) have 
demonstrated high accuracy and low error rates in predicting COVID-19 
case increases over 30 days [75]. ML on Kaggle datasets, for instance, 
has been used to predict virus outbreaks by comparing data from India 
and China [76]. Hence, predictive models for recovery rates and case-
loads have been proposed, suggesting that ML can enhance forecasting 
accuracy during health crises. Hence, advanced AI models have been 
critical in medical imaging innovations, improving the diagnostic speed 
and precision [32,77,78].

Moreover, nanotechnology-based monitoring devices can capture 
real-time physiological data, and ML-driven analytics can interpret these 
data to predict the onset and progression of disease (Table 3). This 
paradigm shift shows promise in combating chronic and lifestyle-related 
diseases, which account for significant global morbidities and mortal-
ities [79,80]. Pneumonia, for instance, has been detected using DL 
methods such as CNN variations, including DenseNet, ResNet, and 
MobileNet [81]. In addition, innovations, including multi-branch 
learning, ensemble methods, explainable AI tools, and transfer 
learning, work well with hybrid feature selection methods and transfer 
learning while withstanding noisy data [82]. Comprehensive datasets 
for creating predictive radiomic signatures and enhancing early detec-
tion are available through programs such as the NLST and LUNGx 
Challenge [82,83]. It is also worth noting that rapid diagnosis models for 
COVID-19 have been made possible by pixel-level segmentation and 
fusion datasets. To improve diagnostic efficiency and accuracy, new 
diagnostic techniques are being used, such as voting-based ensemble 
classifiers, social optimization algorithms, and portable thermal imaging 
systems [84,85].

Moreover, cutting-edge AI approaches have been combined with 
imaging technologies to enhance the detection and prediction of lung 
cancer. Lung nodule detection from CT scans has improved via models 
such as multi-perspective and multi-feature deep fusion learning 
frameworks [86], where Riesz wavelet transformations and LBP features 
have improved the diagnostic accuracy in differentiating benign from 
malignant nodules. Even with small datasets, DL models, particularly 
DenseNet-121 and transfer learning techniques, have shown promise 
[87–89]. Significant advancements in nodule detection and malignancy 
classification have been demonstrated using hybrid approaches, 
including CNN, genetic algorithms (GA), gray wolf optimization (GWO), 
and segmentation techniques [82]. Advanced sensor-equipped nano-
scale robots controlled by AI algorithms are also being developed for 
precise cellular illness detection and real-time monitoring, allowing for 
early intervention, where preliminary diagnostic accuracy is improved 
by methods such as the Complementary Learning Fuzzy Neural Network 
(CLFNN), which simulates human-like reasoning [90,91].

Moreover, AI-powered emotion recognition tools are transforming 
nanomedicine for mental health monitoring and patient-centered care. 
These technologies use ML techniques to enhance the performance and 
accuracy of emotion classification, including textual interaction-based 
emotion estimation and hybrid recommendation systems. Strong 
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performance has been demonstrated across various datasets using 
models such as keyword-based classifiers, hybrid neural networks, and 
multi-class support vector machine (SVM) kernels [92,93]. Hence, 
emotional links between words can now be better captured by sophis-
ticated models such as CNN architectures, BiLSTM, and semantic 

emotion neural networks (SENN). Multimodal emotion detection has 
also seen the introduction of self-supervised learning transformers and 
self-attention fusion mechanisms, suggesting a move toward increas-
ingly complex and context-aware models. The accuracy over prior re-
sources such as WordNet-Affect has been further improved by Hidden 
Markov Models and upgraded knowledge bases such as EmoSenticNet 
[93–95]. Notably, supervised ML algorithms are increasingly being used 
to predict and diagnose heart diseases. Graphical User Interfaces (GUIs) 
using Weighted Association Rule-Based Classifiers are user-friendly 
diagnostic AI tools that have been successfully applied to improve 
early cardiac failure prediction [96]. Additionally, Hybrid systems, such 
as coactive neuro-fuzzy inference systems (CANFIS) and classical ML 
models, such as Naïve Bayes classifiers, improve prediction accuracy. 
These advancements demonstrate the growing role of AI in creating 
smarter, faster, and more accessible tools for cardiovascular health 
monitoring, diagnosis, and personalized care in nanomedicine [96]. 
Therefore, the role of predictive analytics in personalizing treatment 
regimens cannot be overstated, as these technologies facilitate 
population-level surveillance and identify patterns and trends that guide 
public health strategies [74].

5.3. Accelerated drug discovery

The drug discovery process has long been plagued by high costs, long 
timelines, and high attrition rates. The combination of nanotechnology 
and ML has significantly streamlined this process by enabling the rapid 
screening, optimization, and development of nanoparticle-based drug 
formulations. ML algorithms can analyze large datasets to identify 
promising candidates for therapeutic applications, thereby dramatically 
reducing the time required for preclinical testing [80]. Additionally, 
AI-guided nanorobots in drug delivery can target body locations while 
preserving healthy tissues, increasing therapeutic efficacy, and reducing 
toxicity and adverse consequences. To optimize individualized treat-
ment, these nanorobots can automatically modify drug release rates in 
response to physiological data collected in real time [90,100]. A notable 
area of application is the development of personalized therapeutics for 
rare diseases, where traditional drug development methods often fail 
because of limited patient populations. Moreover, Nanotechnology, 
with its ability to target specific cellular pathways, combined with ML’s 
predictive capabilities of ML, has paved the way for the discovery of 
precision drug delivery systems. For example, ML models have suc-
cessfully identified nanoparticles capable of crossing the blood-brain 
barrier, which is a critical challenge in the treatment of central ner-
vous system disorders [19,101]. Furthermore, ML has been instrumental 
in optimizing the physicochemical properties of nanocarriers, enhancing 
their efficacy and safety profiles. This innovation has significant impli-
cations for cancer treatment, where the delivery of chemotherapeutic 
agents to tumor sites with minimal off-target effects is crucial [102].

5.4. Regenerative medicine

In regenerative medicine, the convergence of nanoscale scaffolds and 
AI-driven optimization strategies has opened new frontiers for tissue 
engineering and stem cell therapies. Nanotechnology provides tools for 
designing scaffolds that mimic the extracellular matrix and create an 
ideal environment for cell growth and differentiation. ML offers pre-
dictive models for optimizing scaffold properties and guiding experi-
mental designs [103]. AI has also facilitated advances in stem cell 
research by analyzing genetic and epigenetic data to predict differenti-
ation outcomes, thus enhancing the precision of regenerative therapies. 
For instance, cardiac patches have been developed to repair myocardial 
infarction, and neural tissues have been engineered to treat spinal cord 
injuries [7,74]. These innovations demonstrate the transformative po-
tential of combining nanotechnology and ML to address some of the 
most challenging medical conditions worldwide. Moreover, the inte-
gration of nanoscale materials with AI has been pivotal in the 

Table 3 
A summary of ML model performances in precision medicine.

ML Models Application area Performances References

Support Vector 
Machines (SVM)

Early lung cancer 
detection (mass spec 
+ SVM); disease 
diagnosis; emotion 
recognition; feature 
selection

Sensitivity >90 %, 
specificity 92 % for 
lung cancer; used 
for emotion 
classification with 
multi-class kernels

[69,97]

Random Forest 
(RF)

Disease prediction; 
tumor classification; 
imaging data 
analysis

Effective in clinical 
decision support 
and diagnostics

[72,97]

Deep Learning (DL) COVID-19 
prediction, lung 
cancer diagnosis, 
pneumonia 
detection, brain 
metastasis detection

High accuracy; 
DenseNet, ResNet, 
MobileNet used for 
pneumonia; 
DenseNet-121 for 
brain metastases 
detection

[70,87,
89]

Convolutional 
Neural Networks 
(CNN)

Medical imaging 
diagnostics (lung 
cancer, pneumonia); 
emotion recognition

CNN variations 
(DenseNet, ResNet, 
MobileNet) used; 
hybrid approaches 
combining CNN 
with genetic 
algorithms

[87,88,
98]

K-Nearest 
Neighbors (KNN)

Voice analysis for 
disease detection; 
imaging data 
classification

Used for 
Parkinson’s 
detection and 
imaging data 
analysis

[12,93]

Artificial Neural 
Networks (ANN)

Heart disease 
prediction

Good predictive 
effects reported

[13,96]

Weighted 
Association Rule- 
Based Classifiers

Early cardiac failure 
prediction

User-friendly GUI- 
based diagnostic 
tool

[13]

Coactive Neuro- 
Fuzzy Inference 
Systems (CANFIS)

Cardiovascular 
disease prediction

Hybrid system with 
improved 
prediction accuracy

[13]

Naïve Bayes 
Classifiers

Heart disease 
prediction

Classical ML model 
enhancing 
diagnostic accuracy

[13]

Genetic Algorithms 
(GA)

Lung nodule 
malignancy 
classification

Combined with 
CNN and 
segmentation 
methods

[83,98]

Gray Wolf 
Optimization 
(GWO)

Lung cancer 
detection

Used with CNN and 
segmentation 
techniques

[83,98]

Complementary 
Learning Fuzzy 
Neural Network 
(CLFNN)

Cellular illness 
detection

Simulates human- 
like reasoning to 
improve diagnostic 
accuracy

[13]

Hidden Markov 
Models (HMM)

Emotion detection Improves accuracy 
over previous 
models

[94,95]

Transfer Learning Lung cancer 
diagnosis; glioma 
detection

Used to improve 
accuracy with small 
datasets

[70,87]

Ensemble Methods 
& Voting-Based 
Classifiers

COVID-19 diagnosis; 
general diagnostic 
improvement

Voting-based 
ensemble classifiers 
improve accuracy

[88,99]

Self-Supervised 
Learning 
Transformers

Multimodal emotion 
detection

Context-aware 
model enhancing 
emotion 
classification

[92,93]

Multi-class SVM 
Kernels

Emotion 
classification

Effective 
classification of 
textual emotion 
data

[94,95]
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development of biocompatible and functional prosthetic devices. These 
technologies have the potential to restore mobility and functionality in 
patients with disabilities, further highlighting the role of converging 
technologies in improving patient-centric care [101].

5.5. Comparative AI pipelines for nano-engineering

Two dominant artificial intelligence pipelines currently guide 
nanodevice design (Fig. 2): (i) Retrieval-Augmented Generation (RAG), 
which retrieves multi-omics and materials science literature in real time 
and couples it with a generative large-language model to propose novel 
carrier chemistries, and (ii) classical supervised or self-supervised pre-
diction pipelines that learn mappings from labelled structure–property 
datasets to rank candidate nanocarriers [104,105]. RAG excels when 
published evidence is sparse or rapidly evolving because it grounds 
generation in the latest external knowledge; however, it inherits a 
retrieval bias and depends on high-quality embedding [106,107]. Su-
pervised pipelines achieve state-of-the-art accuracy on well-curated 
physicochemical datasets and integrate physics-informed layers for 
stability predictions; however, they struggle to extrapolate beyond their 
training domain. [108,109]. A growing trend is to hybridize both ap-
proaches, using a RAG front-end to suggest compositions and a super-
vised back-end for fast in-silico screening, thereby shortening the 
design–make–test loop from weeks to hours.

6. Challenges and limitations

6.1. Technical barriers

Integrating nanotechnology devices with ML in precision medicine 
faces several technical barriers, including data scarcity, bias, and over-
fitting issues. A significant challenge is the complexity and high het-
erogeneity of patient data, which complicate the design of diagnostic 
and therapeutic platforms [19]. Similarly, AI models often rely on large, 
high-quality datasets that are often incomplete, inconsistent, noisy, or 
based on Western populations [110]. Multimodal data, including im-
aging, genetic, and clinical information, must also be fused for person-
alized nanosystems, which are high-dimensional, platform-dependent, 
and difficult to integrate [111]. The integration of ML with 
nanotechnology-based medical sensors is crucial for advanced clinical 
decision support systems. However, challenges in data privacy, security, 
and the development of reliable nanoscale IoT devices must be 
addressed [112]. The scalability of manufacturing AI-optimized nano-
particles is another challenge. Mass production of patient-specific for-
mulations adapted to genetic profiles is difficult. The inconsistent 
performance of nanoparticles can result from minor changes made 

during production. Hence, AI tools, such as GANs and workflow opti-
mization models, are being developed to predict feasible designs and 
streamline production, although the lack of standard protocols hinders 
reproducibility [113–115]. Although predictive accuracy is critical, 
clinicians, regulators, and patients must understand why an algorithm 
recommends a specific nanotherapy. Post hoc, model-agnostic tools such 
as SHapley Additive exPlanations (SHAP) and Local Interpretable 
Model-agnostic Explanations (LIME) assign importance scores to specific 
design features (e.g., zeta potential, core-shell ratio, or PEGylation), 
enabling bench scientists to refine these parameters [116,117]. In 
imaging-based nanodiagnostics, Gradient-weighted Class Activation 
Mapping (Grad-CAM) and Integrated Gradients highlight the pixel re-
gions or spectral peaks that drive lesion classification, facilitating reg-
ulatory review and transparent communication with radiologists [118,
119]. For biosensing applications, saliency maps superimposed on 
impedance spectra or Raman shifts provide real-time calibration cues for 
point-of-care nanosensors and generate intuitive visuals that clinicians 
can share with patients and caregivers, meeting the requirements for 
patient-facing interpretation [120,121]. Embedding these explainability 
methods into the clinical software stack reinforces trust, satisfies forth-
coming transparency provisions in the EU AI Act, and helps mitigate 
liability concerns.

Moreover, the integration of nanotechnology with AI systems is 
complex because of the need for precise control and manipulation at the 
nanoscale, which requires sophisticated algorithms and computational 
models. [122]. Therefore, successful integration requires a multidisci-
plinary approach, including materials science, computer engineering, 
biomedicine, and data science, to develop compatible systems and in-
terfaces [122]. The handling of large and complex datasets from nano-
sensors also presents challenges. Nanosensors generate vast amounts of 
complex and multidimensional data, posing challenges in data storage, 
processing, and analysis [98], as well as autonomous decision-making, 
which can be provided by ML algorithms. In addition, data standardi-
zation, privacy, and the need for collaborative networks for data sharing 
are significant challenges [123]. The integration of big data analytics 
with precision medicine also requires the development of robust infor-
matics systems to effectively manage and interpret these datasets [124]. 
Therefore, advanced ML algorithms capable of efficiently processing and 
extracting meaningful insights from these large datasets are crucial for 
real-time decision-making in precision medicine [23].

6.2. Ethics and privacy concerns

The integration of nanotechnology and AI in precision medicine 
raises significant ethical, privacy, and data-related concerns, particu-
larly regarding data security, genetic data analysis, and interdisciplinary 
collaboration. This is because breaches of patient privacy can occur, 
requiring robust computational data protection measures combined 
with legal and ethical frameworks to ensure secure sharing of genomic 
data [125]. Additionally, the integration of AI and nanotechnology 
amplifies the collection of sensitive data, thus increasing the risk of 
cyberattacks and exposing systems to increased vulnerabilities [126]. 
Therefore, developing comprehensive regulatory frameworks is critical 
for protecting patient data and maintaining adherence to privacy 
legislation [127].

Furthermore, ethical challenges in genetic data analysis, including 
informed consent, intellectual property rights, privacy, equitable access 
to innovations, and the handling of incidental findings, require careful 
ethical considerations, including dynamic consent models that adapt 
over time [128]. When trained on biased datasets, AI algorithms can 
reinforce existing biases, resulting in inequitable outcomes in healthcare 
systems [126]. In addition, the ethical dilemmas surrounding genetic 
modifications require careful consideration, emphasizing the need to 
assess the potential implications of these interventions [127].

Fig. 2. Comparison of AI pipelines for nano-engineering.
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6.3. Cost and accessibility

Developing multifunctional ML platforms for clinical data manage-
ment and analysis can support personalized medicine, potentially 
reducing costs by optimizing decision-making and improving patient 
outcomes [129]. However, the production of nanomaterials and their 
integration with ML systems involves substantial manufacturing costs, 
which may pose financial challenges for smaller healthcare providers 
[23,130]. Furthermore, the development of nanotechnology-ML appli-
cations requires significant initial investment in research and develop-
ment, often necessitating access to specialized facilities and highly 
skilled expertise [80,91]. The significant costs associated with these 
technologies also risk widening existing healthcare disparities, restrict-
ing access for underprivileged populations, and perpetuating inequality 
in healthcare delivery [99,131]. Usability challenges, such as inter-
pretability and workflow integration, are also of equal concern. These 
challenges decrease adoption in practice because AI technologies are not 
clinician-friendly, have confusing interfaces, and require extensive 
training [114]. Moreover, innovative treatments incorporating nano-
technology and ML often fall outside the scope of many insurance plans, 
creating additional barriers to patient access [132].

6.4. Regulatory challenges

Significant regulatory challenges arise when AI and nanotechnology 
are used in the field of nanomedicine. The dynamic nature and 
opaqueness of AI algorithms and the complexity of nanomedicines 
exceed the capabilities of conventional approval processes. [114,133]. 
For example, the US Food and Drug Administration (FDA) faces chal-
lenges in regulating nanotechnology-based products because of the 
unique properties of NMs, which require specific safety and efficacy 
evaluations [134]. Additionally, the regulatory pathways for nano-
medicine are complex and often lack clear guidelines, which can hinder 
the approval and clinical adoption of these technologies [135]. There-
fore, ensuring biocompatibility and addressing safety concerns are 
critical for the clinical application of nanotechnology in medicine [136]. 
Furthermore, regulatory challenges in ML, such as ensuring the gener-
alizability and reliability of predictive models, have been noted, as these 
models often fail to perform consistently across datasets [137]. There is 
also a concern that AI could worsen healthcare inequalities because 
patients and practitioners may find it difficult to understand AI-driven- 
and data-driven therapy suggestions [138].

7. Future directions

7.1. Innovations on the horizon

The future of biodegradable nanomaterials and environmentally 
friendly technology appears promising, particularly with the integration 
of AI systems, such as ML and quantum computing. While biodegradable 
nanoparticles are used in drug delivery systems [139], biodegradable 
nanoscale sensors can detect pollutants at low concentrations, providing 
real-time data for environmental assessments and supporting pollution 
control efforts (Fig. 1) [91], which are necessary for the mitigation of 
some respiratory diseases. Additionally, smart nanocarriers that can 
respond to environmental signals, such as pH or temperature changes, 
and release their payloads exclusively in the appropriate region are 
highlighted, as they increase therapeutic effectiveness while reducing 
systemic drug exposure [2].

Furthermore, ML algorithms analyze massive volumes of patient 
data to anticipate reactions to specific treatments, allowing personalized 
therapeutic approaches based on individual genetic profiles and illness 
characteristics. This could greatly improve the precision of the drug 
composition [7]. Therefore, ML facilitates the identification of new 
biomarkers that can guide the development of nanomedicines custom-
ized for individual patients, thereby improving diagnosis and treatment 

strategies [71]. Moreover, future breakthroughs will include advanced 
lab-on-chip devices that use nanotechnology for fast-track diagnostics. 
These devices can analyze small blood or tissue samples for early disease 
detection, providing immediate results that inform treatment decisions 
[71].

Moreover, multi-omics data integration provides a comprehensive 
perspective of biological processes by merging information from many 
omic layers, including genomics, transcriptomics, proteomics, and 
metabolomics (Fig. 1). This comprehensive approach contributes to our 
understanding of the complex interactions within biological systems and 
disease pathways [97]. Additionally, the integration of multi-omics data 
is critical for precision medicine, which tailors treatments to specific 
patient profiles based on distinct biological traits. This may lead to more 
effective medications and improved patient outcomes [140,141]. In 
oncology, integrated multiomics analyses have led to breakthroughs in 
understanding cancer biology, enabling better classification of cancer 
types and prediction of treatment response. ML techniques are being 
progressively developed to automate this integration process, thereby 
enabling drug discovery and personalized treatment strategies [140,
142]. These innovations represent a significant shift towards more 
personalized and effective medical treatments through the integration of 
nanotechnology and ML, paving the way for a new era in precision 
medicine.

7.2. Collaborative efforts

The synergy between nanotechnology, ML, and healthcare requires 
rigorous multidisciplinary research and collaboration among key 
stakeholders in the field. This collaboration is crucial for promoting 
innovation and driving meaningful application. Therefore, collaboration 
among the government, academia, and industry is critical for promoting 
multidisciplinary research in nanotechnology, ML, and healthcare. 
These collaborations, by exploiting each sector’s distinct strengths, have 
the potential to lead to major advances in medical diagnostics and 
treatment options, ultimately improving patient outcomes and boosting 
healthcare technology.

8. Recommendations

To fully realize the potential of ML and nanotechnology in precision 
medicine, a comprehensive strategy that considers funding, ethical 
considerations, cooperative research, and regulatory developments is 
needed. Prioritizing interdisciplinary collaborations among biomedical 
researchers, physicians, AI experts, and nanotechnologists could accel-
erate the conversion of discoveries into practical applications. Improved 
public and private sector funding is needed to support innovation, 
especially in fields such as AI-driven drug discovery, personalized 
therapeutics, regenerative medicine, and predictive diagnostics. Inter-
national research networks will facilitate data sharing, standardization 
of AI models, and incorporation of nanomedicine into traditional med-
ical treatments.

Establishing a robust ethical and regulatory framework is necessary 
to ensure patient safety, data privacy, and equitable access to state-of- 
the-art medical technology. Regulatory bodies must work to provide 
more accurate guidelines for AI-driven nanomedicine while ensuring 
accelerated clearance procedures for nanotechnology-based treatments. 
Strong cybersecurity and encryption methods are crucial to avoid un-
authorized access to genetic and biometric data due to the complexity of 
patient data in precision medicine. Bias in AI models must also be 
addressed to ensure that precision medicine serves all populations, 
regardless of socioeconomic status or geographic location, and to 
eliminate global health disparities. To lower production costs and 
improve accessibility, more nanotechnology-based medical gadgets 
should be manufactured. Widespread clinical application will be made 
possible by improvements in the efficiency of drug delivery and imaging 
devices, brought about by advancements in nanomaterial fabrication 
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and AI-driven optimization. To ensure that these cutting-edge technol-
ogies do not remain exclusive to high-income countries, special atten-
tion should be paid to the application of nanotech-ML solutions in low- 
resource situations.

Furthermore, by establishing a fully AI-integrated environment in 
which personalized therapy is powered by autonomous diagnostics, 
real-time therapeutic adjustments, and predictive analytics, nanotech-
nology and ML have the potential to transform healthcare delivery. 
Advances in quantum computing will accelerate AI-driven drug devel-
opment by enabling the precise and rapid identification of therapeutic 
targets. The application of artificial intelligence and nanotechnology in 
gene editing and regenerative medicine could significantly expand the 
range of treatments available for genetic abnormalities, cancer, and 
neurological conditions. To achieve this, governments, academic in-
stitutions, and IT executives must collaborate to create an environment 
that promotes innovation while reducing obstacles related to cost, 
technology, and ethics. Through wise investments, interdisciplinary 
collaborations, and appropriate AI governance, nanotechnology and ML 
will not only redefine modern medicine but also establish a new stan-
dard for patient-centered and precision-driven healthcare worldwide.

9. Conclusion

This article highlights the combined potential of nanotechnology and 
ML to revolutionize precision medicine. By pairing molecular-scale 
nanoparticles with data-driven algorithms, healthcare can shift from 
reactive treatment to personalized preventive care. Smart nanocarriers 
deliver diagnostics and therapeutics to previously inaccessible targets, 
whereas ML models rapidly decode complex biological signals and guide 
clinical decisions in real time. Continued progress in biodegradable 
materials, AI-directed drug discovery, adaptive nanosystems, and multi- 
omics analytics will accelerate the development of closed-loop medical 
solutions. To translate these innovations into routine practice, stake-
holders must prioritize transparent data governance, reproducible 
manufacturing, patient-centered ethics, and financing models that keep 
advanced care affordable and accessible globally.
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