
Commission on Higher Education (CHED) – Institutional Development and Innovation Grants (IDIG)  

 

 
978-1-6654-9299-7/22/$31.00 ©2022 IEEE 

A Multistage Transfer Learning Approach for  
Acute Lymphoblastic Leukemia Classification 

   
Renato R. Maaliw III 

College of Engineering 

Southern Luzon State University 

Lucban, Quezon, Philippines 
rmaaliw@slsu.edu.ph 

 
Julie Ann B. Susa 

College of Engineering 

Southern Luzon State University 

Lucban, Quezon, Philippines 
jsusa@slsu.edu.ph 

 

 

Alvin S. Alon 
Digital Transformation Center 

Batangas State University 

Batangas City, Philippines 
alvin.alon@g.batstate-u.edu.ph 

 
Ryan C. Reyes 

Electrical Engineering Dept. 

Technological University of the 

Philippines 

Manila, Philippines 
ryan_reyes@tup.edu.ph 

 

Ace C. Lagman 
Information Technology Dept. 

FEU Institute of Technology 

Manila, Philippines 
aclagman@feutech.edu.ph 

 
Ma. Corazon Fernando - Raguro 
Information Technology Dept. 

FEU Institute of Technology 

Manila, Philippines 
mgfernando@feutech.edu.ph 

 
 

Manuel B. Garcia 
Information Technology Dept. 

FEU Institute of Technology 

Manila, Philippines 
mbgarcia@feutech.edu.ph 

 
Alexander A. Hernandez 

Graduate Program & External Studies 

Technological University of the 

Philippines 

Manila, Philippines 
 alexander_hernandez@tup.edu.ph

Abstract—Automated medical image analysis driven by artificial 

intelligence can revolutionize modern healthcare in producing 

swift and precise diagnostics. Due to doctors’ varying breadths of 

training and expertise, traditional leukemia screening methods 

frequently involve considerable subjectivity. Using a 3-stage 

transfer learning approach and stacks of convolutional neural 

networks, we constructed an efficient pathway for automatic 

leukemia identification and classification through various phases. 

Experimental findings disclosed that our pipeline powered by 

InceptionResNetV2 architecture decisively affects the accuracy 

with 99.60% (normal vs. leukemia) and 94.67% (normal to L3). 

Moreover, it reduces error rates by 1.65% and 6.05%, 

respectively. A consistent result via the T-test confirms our 

proposed framework robustness with a significant positive 

difference of 4.71% over the standard transfer learning 

mechanism (p-value = 0.0001 & t = 0.85310). This research could 

aid and support oncologists in early yet reliable prognoses of 

acute lymphoblastic leukemia types.  

Keywords—blood cancer, convolutional neural networks, deep 

learning, image processing, , machine learning, transfer learning 

I.   INTRODUCTION 

Leukemia is a life-threatening form of cancer distinguished 
by the growth of abnormal blood cells causing the immune 
system’s degradation. According to World Health 
Organization (WHO) 2020 statistics, it has an estimated 2.6% 
(474,519 – ranked 13th) cases out of the 18.1 million total 
cancer instances worldwide [1]. Their classification is either 
acute (rapidly progressing) or chronic (gradually advancing) 
and by the type of cell in which it manifests: myeloid or 
lymphoid. Understanding the exact type of its nature at an 
early stage enables physicians to accurately anticipate a 
patient’s prognosis and identify the most effective treatment 
for increasing a patient’s survival rate significantly.  

Acute lymphoblastic leukemia (ALL) is a fatal condition 
accounting for 25% of pediatric cancers. It is brought by bone 
marrow’s immature lymphocytes where leukemic cells spread 
swiftly into various organs (spleen, liver, kidney & lymph 
nodes) and the central nervous system (brain & spinal cord) of 
the body [2]. Fig. 1 displays ALL’s variants according to the 
French-American-British (FAB) system [3]. The L1 is 

characterized by its uniform nuclear structure with 
homogenous chromatin, sparse basophilic cytoplasm, and 
modest sizes. On the other hand, L2 exhibits irregular nuclear 
shape and evident splits in large blasts, which is intensely 
basophilic polymorphic chromatin. Severe stage L3 ranges 
from medium to large sizes, containing noticeable cytoplasmic 
vacuoles of round to oval shape, comprising two or three 
nucleoli. For its diagnosis, hematologists performed blood 
smears or bone marrow microscopic examinations. This 
process is manual, complex, costly, and time-consuming for 
doctors to differentiate the morphological characteristics 
between normal versus immature leukemic cells due to other 
surrounding blood components such as erythrocytes (red blood 
cells or RBC) and platelets. Unfortunately, errors in medical 
image interpretation are not negligible as it heavily relies on 
the pathologist’s knowledge, training, experience, and 
expertise [4]. In order to circumvent these constraints, experts 
recommend using an accurate yet economical intelligent 
automated system against labor-intensive manual diagnostics 
for categorizing malignant lymphocytes (white blood cells or 
WBC) [5]. 
 

 
Fig. 1. FAB classification system for ALL (a-c)  [6][7]. 

 

According to the literature, various studies ventured into 
leukemia screening and grading.  Previous efforts 
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concentrated on traditional image processing and machine 
learning techniques based on feature extractions, 
segmentations, and classifications. The authors [8 – 10] 
offered different classifiers such as support vector machines 
(SVM) and Naïve Bayes in conjunctions with Gray-level-run-
length matrix (GLRLM), based on textures, color, and shape 
attributes. Proponents [11] employed watershed 
transformation and the Gaussian mixture model (GMM) to 
recognize the condition in blood micrographs. WBC nucleus 
and cytoplasm fractionization proposed by [12] utilized GVF 
snake to identify the illness. Conversely, paper [13] conducted 
a morphological analysis to identify leukemic cells via 
orthogonal S-transform feature extraction and linear 
discriminant analysis (LDA). Researchers [14] presented the 
localization of lymphoblast cells using color models 
accompanied by pathological operations for the partitions. 
Scientists [15] [16] experimented with different decision tree 
algorithms (random forest, gradient boosting & CART) with 
satisfactory accuracy. Cell fragmentization techniques 
introduced by [17] leverage contrast enhancements, histogram 
equalization, Otsu threshold, and K-nearest neighbor, claiming 
accuracy of 93%. All of the aforementioned strategies involve 
feature extractions and segmentations that significantly 
influence the overall performance. However, data scientists 
regard handcrafted features as a drawback of conventional 
machine learning because of adaptability and scalability 
concerns [18]. 

In the context of image recognition, deep learning’s (DL) 
mechanism delegate attribute design to the underlying 
network, making previous solutions obsolete with the 
emergence of transfer learning (TL). TL is a constantly 
evolving and remarkably effective tool for medical image 
processing powered by convolutional neural networks (CNN). 
The work of [19] utilized modified pre-trained CNNs of 
ResNet-101, AlexNet [20], and GoogleNet for WBC counting 
and classifications. Several studies deployed VGGNet [21] 
[22], InceptionV3 [23], DenseNet [24] [25], and MobileNet 
[22] for a four-level discrimination of ALL with average 
accuracies of 95% to 97%. Another study attained 98% high 
precision ratings using ResNetV2 by extracting topological 
features through augmented data preprocessing and skipped 
connections to mitigate the vanishing gradient problem [26]. 
Article [27] established a practical yet lightweight architecture 
involving depth-wise separable convolutions under a 
MobileNetV2 that capitalized on width (layer reduction) and 
resolution multiplier (computational cost optimization). 
Diverse scholars suggested ensemble learning frameworks to 
enhance performance further and avoid overfitting in 
exchange for execution times. Integration of VGG19 and 
NASNetLarge achieves an accuracy of 96.58% exceeding 
individual models [28].  

We observed that the prior system relied solely on manual, 
standard ML, and DL modalities. Furthermore, existing 
implementations of ALL’s characterization suffer due to the 
small dataset, compromising generalization capabilities. 
Leukemia prognosis is a sensitive matter that can lead to life 
or death situations needing an almost perfect evaluation. Our 

contribution aims to advance medical image analysis by 
developing comprehensive procedures for extracting structural 
information by considering the long-distance dependencies of 
hematological microscopic images. Improving the 
identification and four-level classification centered on distinct 
processes and multistage deep learning networks can benefit 
medical practitioners in the expeditious and reliable diagnosis 
of ALL with little physical interventions. 

II.   METHODOLOGY 

The subsequent section comprehensively explains ALL’s 
automatic detection and classification. Key portions consist of 
data acquisition, preprocessing, augmentation, image 
segmentation, convolutional neural network architectures 
implementation, hyperparameter tuning, and evaluation 
metrics. 

A. Data Collection 

We collected 100 (ALL-IDB1 – for detection & 
classification) and 240 (ALL-IDB2 – for segmentation) 24-bit 
colored JPEG images from a private repository [29], where the 
first set contains 39,000 labeled lymphocytes by highly trained 
oncologists with 2592 x 1944 resolutions. The second batch of 
data consists of clipped regions of interest from ALL-IDB1 
representing normal and leukemic cells with dimensions of 
257 x 257 pixels, where 50% denote lymphoblasts. Fig. 2 and 
Fig. 3 show excerpts of the images. 
 

 
 

Fig. 2. Non-ALL (a-c) and ALL (d-f) miscroscopy of patients. 

 

Fig. 3. Healthy (a-d) and lymphoblastic (e-h) cells. 
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B. Data Preprocessing 

Most microscopic images show all the blood components 
(RBC & platelets). However, we are only explicitly concerned 
with immature lymphocytes for ALL’s type. We experimented 
with k-means clustering, watershed, and morphological 
operations to define the region of interest (ROI), but the RGB 
(red-green-blue) channels in monochrome filter proved simple 
yet efficient. To precisely reflect the blasts, we applied 
specific values of red = +88, green = +41, and blue = +20. The 
refinement of the ROI is handled by threshold (t) operation, 
with t = 98, accomplished to discard even more unnecessary 
information to discriminate lymphoblast. This initial stage was 
essential for segmentation purposes on the next phase. Fig. 4 
depicts the process. 
 

 
Fig. 4. Original images (a) are preprocessed using RGB channels with 

monochrome filter (b) to extract ROI and discard other information. 

C. Image Segmentation 

The volume and localization of WBC in blood slides are 
helpful for the diagnosis of all forms of leukemia. 
Segmentation offers a practical basis for the advancement of 
image processing techniques. Nonetheless, evaluating 
microscopic hematological photographs remains extremely 
difficult owing to intricacy issues of backdrop due to the 
overlapping blood-related structures. Moreover, histological 
staining conditions add to the variances [30]. To solve this 
dilemma, we designed a modified Residual U-Net with a 3 x 3 
stride to buffer its default CNN’s convolution layers, a 
rectified learning unit (ReLU) activation function, and 
incorporated standardization to encoder and decoder sections 
of the network (Fig. 5). Using a 2 x 2 max-pooling, we then 
reduce the size of the feature map to make learned features 
robust and diminish the effects of noise (Fig. 6(a)). The final 
step is to transform the partitioned WBC via RGB’s blue-

channel (Fig. 6(b)) to isolate the lymphoblast and eliminate 
other components with a black backdrop (Fig. 6(c)). 
 

 

Fig. 5. Modified Residual U-Net for WBC segmentation with encoder (left), 
decoder (right) sections, and concatenation mechanism. 

 

Fig. 6. Segmentation (a), blue-channel transformation (b), and lymphoblast 
isolation using black backdrop to eliminate other blood components (c). 

D. Data Augmentation 

The inadequacies of medical image training impede pattern 
recognition betterment, as it directly affects the performance 
of DL. As a solution, we performed dataset augmentation by 
producing additional unique data synthetically. Image 
transformations such as flipping (vertical & horizontal), 
rotating (random angle of 0 to 180 degrees), shifting, and 
scaling produced an additional 1,360 (ALL-DB1 = 400 & 
ALL-DB2 = 960) images for a total of 1,700 well-balanced 
data based on ALL’s categorization. By leveraging this 
procedure, data scientists can avoid the painstaking and costly 
data collection in preparation for building robust prediction 
models impervious to overfitting. Lastly, we divided the 
dataset into 80/30 splits for training and testing, using 10-fold 
cross-validation. 

E. Multistage Transfer Learning 

TL enables deep learning algorithms to construct an 
effective model by transferring information from one 
operation to another despite lacking sufficient training data. 
While medical photos are not included in pre-trained  
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Fig. 7. Proposed pipeline for multistage transfer learning (MTL) approach for acute lymphoblastic leukemia (ALL) detection and classification. 
 

frameworks such as ImageNet’s natural images [31], they are 
nevertheless widely used in different fields. Using 
microscopic images that can be collected and augmented in 
large quantities, we firmly believe that the most effective way 
to improve computer vision analysis is to learn both from 
natural and domain-specific datasets through the multistage 
transfer learning (MTL) approach. In detail, a single-step TL 
works through a given source domain (Ds), target domain (Dt), 
and a learning problem (Lp). It increases the knowledge 
acquisition of a target function (ft) using Ds and Dt. We 
strengthen the pipeline by performing a three-stage TL. Fig. 7 
shows the proposed architecture consisting of several phases. 
In the first phase, a preliminary TL from ImageNet converts 
the natural (raw) images’ similar features to those found in 
blood smear scans. This reduces the cross-entropy function 
using the initial weights (W0) from the pre-trained model to 
yield (W1) described in Equation 1 [32]:  
 

��⟨��, �|�	⟩� =  −1
�� � � ��� ������������� , �	,��, ���

 

�!�

 

�!�
 

 

where xi is the iterative input, yi is the concurrent label, 

�������� , �	,��, �� is the softmax’s probability, and b is the 

bias. Next, we leverage the previous stage’s TL as a baseline 
(W1) and provide weights (W2) for classifying individual 
lymphoblast (Fig. 3 (a-h)) with m training samples depicted in 
Equation 2 [32]: 
 

��⟨�", �|��⟩� =  −1
� � �� ����������� , ��,�", ��� +

 

�!�
 �1 − ��� log�1 − �⟨��|�� , ��, �⟩� 

 

where ������� , ��,�", ��  as the sigmoid unit’s output 

probability. The final phase is to incorporate the learnt 
information from single lymphoblast (W2) to multiple 
instances of the cells (W3) in order to efficiently generalize the 
categorization (Fig. 2 (a-f)).  

F. Deep Convolutional Neural Network Models 

We implemented the top three DL architectures based on 
preliminary assessments such as InceptionV3 [33], Xception 
[34], and InceptionResNetV2 [35]. In our experiment, we 
utilized a global average pooling, a single dense layer with 
softmax, and weight fine-tuning except for the last layer. 
Optimization of the learning rate starts with a 0.001 

exponential decay. Most models showed exceptional 
performance compared with cases that included both 
regularization and dropout. Still, no issues point to overfitting 
due to the substantially augmented dataset. After the transition 
from single to multiple cells in the different stages of TL, 
network layers were eliminated and replaced by multiple 
dense layers, with dropouts, and finally an activation function 
(sigmoid) to finalize the CNN’s design. Fig. 8 shows the 
neural networks implementation for each phase. 
 

 
Fig. 8. CNN’s architectural configurations for each stages of transfer 

learning based on pre-trained natural images. Stage 1 (ImageNet) 
followed by domain-specific ALL datasets (Stage 2 & Stage 3). 

G. Hyperparameter Fine-Tuning 

Optimizing hyperparameters are essential for machine 
learning to operate efficiently. Unlike model parameters, these 
settings are established before training. It is one of the most 
challenging and ignored aspects of creating DL networks. Due 
to manual configurations’ intricacy and time-consuming 
expense, we utilized a sequential-based optimization approach 
with the average adjusted values for CNN models presented in 
Table I. 
 

TABLE I.  NEURAL NETWORKS’ FINE-TUNED CONFIGURATIONS 
 

Architecture Configuration Value 

InceptionV3 
Epoch 
Environment 
Optimizer 
Learning rate 
Batch size 
Loss 
Shuffling 

160 
GPU 

ADAM 
0.001 

48 
Multiclass cross-entropy 

Per epoch 

Xception 

InceptionResnetV2 

(1) 

(2) 
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H. Performance Evaluation Metrics 

Accuracy alone is entirely inadequate for assessing the 
cogency of our MTL model. For a full-blown evaluation, we 
quantitatively experimented with different deep learning 
architectures in terms of F1-Score, precision, recall, confusion 
matrices, receiver operating characteristics (ROC), and area 
under the curve (AUC) scores. Furthermore, we also 
conducted a T-test [36] to quantify the substantial 
advancement of our methods in classifying ALL by comparing 
two independent groups (classical versus multistage TL). The 
following equations provide an overview of the metrics based 
on true positives (TP), true negatives (TN), false positives 
(FP), false negatives (FN), and significance tests (confidence = 
95%, p-value at 0.05). A result below the predetermined p-
value implies a measurable difference, whereas a value above 
indicates otherwise.  
 

'(()*+(� �',� =  -� + -.
-� + -. + /� + /. 

 

�*0(121�� ��3� =  -�
-� + /� 

 

30(+�� �34� =  -�
-� + /. 

 

/1 − 5(�*0 �/1� =  2 � �3 � 34
�3 + 34 

III.   RESULTS 

For this experiment, we executed the algorithms through a 
high-capacity machine powered by a Core-i9 processor with 
5GHz & 32MB L1 and L2 cache, a 64GB RAM with an 
ASUSRTX3070 DDR6 graphics card. Data preprocessing, 
augmentation, and DL modeling were implemented via 
Python, Keras, and Tensorflow libraries. The subsequent 
sections detail the outcomes. 

A. Learning Stabililization Convergence Plots 

Fig. 9 showcases the convergence loss plots of distinct 
neural network variants concerning the number of epochs. Due 
to the implementation of additional TL stages, understandably, 
all evaluated networks took longer to achieve equilibrium than 
the single and double-stage approaches. Although it entails 
extra processing overheads, the MTL method shows 
significant gains in error loss, especially with fine-tuned 
hyperparameters. 
 

 
Fig. 9. Mean convergence loss plots based on different TL configurations. 

B. Leukemia Detection Performance 

The results shown in Table II suggest that the 
InceptionResnetV2 is preferable to other neural network’s 
architectural design in binary classification, with an overall 
accuracy of 99.60%. Moreover, it had a predictive forecasting 
power higher than other models with 99.10% (F1-Score), 
98.80% (recall), and 99.60% (precision). Although it came in 
last place, the InceptionV3 had a respectable 97.80% accuracy. 
 

TABLE II. 10-FOLD CROSS-VALIDATED DETECTION PERFORMANCE  
FOR ALL (NORMAL VS. LEUKEMIA) 

 

Model 
Evaluation Metrics 

Accuracy Precision Recall F1-Score 

InceptionV3 0.978 0.985 0.963 0.973 

Xception 0.981 0.986 0.967 0.976 

InceptionResnetV2 0.996 0.996 0.988 0.991 

C. Leukemia Classification Performance 

With an accuracy of 94.67%, the numbers presented in 
Table III proved that the InceptionResNetV2 was better. It 
outperformed the generalization ability of other networks by a 
margin of 94.68% (F1-Score), 94.66% (recall), and 94.67% 
(precision). The InceptionV3 provides the lowest performance 
with an accuracy of 87.33% comparable to the identification 
of leukemia. 
 

TABLE III. 10-FOLD CROSS-VALIDATED CLASSIFICATION PERFORMANCE  
FOR ALL (NORMAL TO L3) 

 

Model 
Evaluation Metrics 

Accuracy Precision Recall F1-Score 

InceptionV3 0.8733 0.8766 0.8736 0.8741 

Xception 0.9000 0.9024 0.9000 0.9005 

InceptionResnetV2 0.9467 0.9467 0.9466 0.9468 
 

Furthermore, we also constructed ROC and AUC graphs 
for the best-performing architecture to evaluate its prediction 
quality, including its generalization ability. Numbers imply 
that the InceptionResNetV2 can determine the severity of 
leukemia as illustrated in Fig. 10, with scores of 0.98 
(normal), 0.97 (L1), 0.92 (L2), and 0.97 (L3). These values 
indicate significant ratings that go above randomness (red 
diagonal dashed line). In related measurements, micro and 
macro averages of 0.97 and 0.96 reinforced its robustness. 
 

 
Fig. 10. Prediction quality of InceptionResNetV2 on leukemia categorization. 

(3) 

(4) 

(5) 

(6) 
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We then compare the confusion matrices in Table IV to 
deliver in-depth perspicuity into each network’s classification 
capabilities. It is clear from the results that the majority of 
errors (vice-versa) originated from combinations of Normal-
L1 (6.67%), L2-L3 (6.18%), and L1-L2 (5.77%). There are no 
instances of misdiagnosis for Normal-L2, Normal-L3, and L1-
L3. These marks unequivocally demonstrate the generalization 
strength of each model, particularly the InceptionResNetV2 in 
distinguishing between leukemia stages. 
 
TABLE IV.  CONFUSION MATRICES FOR ALL’S CLASSIFICATION (TEST DATA) 

 

InceptionResnetV2 

 Normal L1 L2 L3 

Normal 36 (97.29%) 1 (2.70%) 0 0 

L1 1 (2.63%) 35 (92.10%) 2 (5.26%) 0 

L2 0 
 

2 (5.40%) 34 (91.89%) 1 (2.70%) 

L3 0 0 1 (2.63%) 37 (97.36%) 

Xception 

 Normal L1 L2 L3 

Normal 34 (91.89%) 3 (8.10%) 0 0 

L1 3 (7.89%) 33 (86.84%) 2 (5.26%) 0 

L2 0 2 (5.40%) 34 (91.89%) 1 (2.70%) 

L3 0 0 4 (10.52%) 34 (89.47%) 

InceptionV3 

 Normal L1 L2 L3 

Normal 33 (89.18%) 4 (10.81%) 0 0 

L1 3 (7.89%) 32 (84.21%) 3 (7.89%) 0 

L2 0 2 (5.40%) 33 (89.18%) 2 (5.40%) 

L3 0 0 5 (13.15%) 33 (86.84%) 

D. InceptionResNetV2’s Training/Validation Loss and 

Accuracy 

Fig. 11(a) highlights logarithmic values of 0.58 and 0.68 as 
initial training and validation losses. Based on the plots, a 
point of growing convergence was observed from epochs 65 to 
108 until it reached a point of stabilization at the 160th. On the 
other side, Fig. 11(b) illustrates a progressive convergence at 
epochs 70 to 120, reaching the most outstanding training 
(97.78%) and validation (97.89%) accuracies at the 154th 
epoch. Both figures proved that the best model did not diverge 
(overfit or underfit) in classifying leukemia. 
 

 
Fig. 11. The InceptionResNetV2 model showed no signs of divergence based 

from the training-validation loss and accuracy plots. 

E. Comparative Benchmark Performance between Classical 

versus MultiStage Transfer Learning 

To completely appreciate the improvement of our 
recommended strategy, we conducted repeated random test 
data runs (n = 150) to evaluate the conventional and the 

multistage transfer learning methods. The expectations of the 
two schemes are compared in Table V. The T-test indicates 
that there is substantial difference between the two sets of 
accuracies with p-value = 0.0001, t = 0.85310, and degree of 
freedom of 18. With a 4.71% average increase in accuracy, 
this reflects that our method is significantly superior to the 
standard transfer learning approach. 
 

TABLE V. ACCURACY COMPARISON BETWEEN DIFFERENT  
TRANSFER LEARNING APPROACHES 

 

Runs 
Classical Transfer Learning Multistage Transfer Learning 

Accuracy (%) Accuracy (%) 

1 89.17 93.45 

2 90.28 95.23 

3 87.31 92.82 

4 90.12 94.73 

5 89.35 92.38 

6 88.72 93.85 

7 87.39 95.03 

8 92.43 93.73 

9 89.32 94.39 

10 88.85 94.52 

IV.   DISCUSSIONS 

Our experimentation verified that multiple stages of transfer 
learning using stacks of pre-trained CNNs elevated the 
performance of leukemia identification and classification 
through various procedures. Moreover, the progression of 
training using natural images with domain-specific medical 
datasets benefited the knowledge abstraction of lymphoblast 
characteristics. The empirical results indicated that the 
InceptionResnetV2 surpasses both the Xception and 
InceptionV3 models in recognizing the internal and external 
cellular blood structures with accuracies of 99.60% (detection) 
and 94.67% (categorization). It also downsizes error rates by a 
mean of 1.65% and 6.05% - a noteworthy gain in image 
processing. We also documented that exhaustive procedures 
such as channel filtering, segmentation, augmentation, color 
transformations, MTL, convergence graphs, and training-
validation tests stood as a preamble to our pipeline’s marked 
precision. Despite the time-intensive and computational nature 
of each stages optimization, the benefits exceeded the 
downsides. Confirmatory T-test calculations revealed a 
consistent improvement of almost 5% significant positive 
difference for MTL over CTL. This work remarked that 
complex neural network architectures did not necessarily 
usher in high metric scores as each has distinct advantages 
purely dependent on the targeted medical image domains. The 
research published by [37 – 46] [32] [19] [5] [8], and [21 – 23] 
in machine learning-based medical image processing is on 
equal ground with our obtained findings. Lastly, the 
hindrances of noisy blood scans leading to low picture quality 
caused prediction discrepancies. This paper did not consider 
any solutions for mitigating the effects of the aforementioned 
problems, such as graphics enhancement and reconstructions. 
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V.   CONCLUSIONS AND FUTURE WORK 

ALL is a blood cancer that advances quickly in the absence 
of interventions. If not analyzed correctly in the earlier stages, 
it can result in multiple organ failures and death. Prognoses 
that are dependable, reliable, and timely are crucial for 
oncologists when formulating treatment plans for their 
patients. The existing systems for its evaluation are rigorous, 
laborious, and primarily prone to subjective disparities due to 
personal knowledge and experiences of doctors. In addition, 
most medical experts agreed and attested to the difficulties of 
using only the naked eye for microscopic determination. We 
created an end-to-end pipeline using artificial intelligence to 
detect and classify a fatal disease using a multistage transfer 
learning approach composed of different convolutional neural 
networks. Our trials showed exceptional accuracy 
improvements against the classical transfer learning model. As 
an essential contribution to the advancement of science, 
specifically in medical image analysis, we formulated a 
streamlined system for automated recognition of ALL. There 
is optimism that this research will lead to a better 
understanding of all forms of cancers and their corresponding 
medications. In future works, the authors intend to ramp up 
the efficiency by including an array of image enhancing 
techniques and benchmarking other CNNs. 
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