
Vol.:(0123456789)

Education and Information Technologies
https://doi.org/10.1007/s10639-021-10502-6

1 3

Cooperative learning in computer programming:
A quasi-experimental evaluation of Jigsaw teaching
strategy with novice programmers

Manuel B. Garcia1 

Received: 11 January 2021 / Accepted: 10 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
Computer programming education is often delivered using individual learning strat-
egies leaving group learning techniques as an under-researched pedagogy. This pose
a research gap since novice programmers tend to form their own group discussions
after lecture meetings and laboratory activities, and often rely on peers when a topic
or activity is difficult. Thus, this study intends to evaluate the impact of cooperative
learning using jigsaw technique when teaching computer programming to novice
programmers. A quasi-experimental research using a nonequivalent control group
pretest-posttest design was adopted to examine the impact of jigsaw teaching strat-
egy. After a 14-week programming course, pre- and post-test results revealed a sig-
nificant increase in terms of attitude and self-efficacy, and the experimental group
demonstrated significantly higher scores than in the control group. Therefore, it was
concluded that cooperative learning using Jigsaw technique is a valid and effective
teaching strategy when handling novice programmers in an introductory program-
ming course.

Keywords  Computer programming · Novice programmers · Cooperative learning ·
Jigsaw technique

1  Introduction

In modern society, computer programming has been emphasized as a pivotal digital
competency and a desirable skill for a workforce whose purpose is digital transfor-
mation (Law et al., 2018). Unfortunately, introductory programming learners (sub-
sequently referred as novice programmers) customarily face learning challenges
(Kwon, 2017; Prather et al., 2018; Veerasamy et al., 2016; Rahmat et al., 2012)

 *	 Manuel B. Garcia
	 mbgarcia@feutech.edu.ph

1	 FEU Institute of Technology, Manila, Philippines

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 Education and Information Technologies

1 3

grounded from individual differences such as programming aptitude (Harris, 2014)
and mathematical ability (Delsika Pramata et al., 2018), and non-cognitive factors
such as motivation (Kori et al., 2016), attitude (Bringula et al., 2012), and emotions
(Bosch et al., 2013). This is in addition to the default perception of newbies that
learning programming is rigid, difficult, and sometimes boring (Katai, 2015; Pend-
ergast, 2006). Consequently, the knowledge delivery system of computer program-
ming education has become a significant and challenging issue in the education sec-
tor (Brito & de Sá-Soares, 2014; Krpan et al., 2015). Therefore, educational leaders
have attempted to develop policies and teaching strategies to overcome these prob-
lems from integrating programming courses within compulsory education to utiliz-
ing various pedagogical approaches.

Despite these efforts, there are still empirical evidences showing that teaching
and learning programming languages remains a defiant challenge (Barr & Guzdial,
2015; Sáez-López et al., 2016). As such, researchers have recommended to integrate
proper teaching strategies to overwhelm the presence of serious impediments to
the achievement of learning goals and eventually encourage learning performance
improvements in programming courses (Tsai, 2019; Rahmat et al., 2012; Chang
et al., 2012; Garcia et al., 2019; Annamalai & Salam, 2017). Among the suggested
teaching strategies that experts recommend (Sarpong et al., 2013), educators mostly
follow individual learning (e.g., teacher-centered lectures and individual activi-
ties) while group learning is the under-researched pedagogy. Although there is an
existing research on group learning of introductory computer programming (Tobar
et al., 2011), it is only focused on the proper formation of groups grounded on col-
laborative learning technique. Researchers have also established that collaborative
learning is different from cooperative learning (Sawyer & Obeid, 2017) in such a
sense that the former is about students being responsible for their individual learning
to be shared in the group while the latter is about structuring positive interdepend-
ence and individual accountability. In traditional group works, the “if you succeed, I
lose” mindset is common among members who compete with each other within the
group. However, in cooperative learning group works, each member believes that
they cannot succeed unless the other members of the group succeed (“If you win,
I win”). Therefore, it is still unclear how cooperative learning influences the learn-
ing performance of programming students. This pose a research gap in computer
programming education most especially that novice programmers tend to form their
own group discussions during laboratory activities and after lecture meetings, and
often rely on peers when a topic or activity is difficult (Rahmat et al., 2012). More
importantly, real-life software projects require coordinated efforts of a team due to
the increasing complexity of projects (Fernández-Sanz et al., 2009).

While cooperative learning offers potentially valuable learning opportuni-
ties (Altun, 2015; Gull & Shehzad, 2015; Parveen et al., 2017), educators are still
warned when adopting such strategy (Herrmann, 2013). Moreover, the culture of
computing students prior to experiencing group work shows that they prefer to work
alone to avoid dealing with interpersonal problems and less competent group mem-
bers (Waite et al., 2004). Thus, this study intends to evaluate the impact of coop-
erative learning through the use of Jigsaw Technique (JT) when teaching computer
programming to novice programmers. Understanding the response of learners may

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Education and Information Technologies	

establish a basis for educational institutions, curriculum developers, and program-
ming professors that could help them achieve a better knowledge delivery system
of computer programming education. Towards the realization of this goal, a quasi-
experimental study was conducted to evaluate the effects of JT as a cooperative
learning strategy among novice programmers where an experimental group and a
non-equivalent group were compared in terms of attitude, self-efficacy, and knowl-
edge gain. On a side note, pair programming was not selected as the intervention
strategy since its impact to students was already investigated (Facey-Shaw & Gold-
ing, 2005; Faja, 2014; Umapathy & Ritzhaupt, 2017). Lastly, the succeeding parts of
the paper cover the theoretical underpinning, how data was collected and analyzed,
discussion of the findings, and conclusions, implications, and recommendations.

2 � Literature review

2.1 � Computer programming

With computer programming being sought as a desirable skill in the twenty-first cen-
tury, policies and teaching strategies are being proposed to strengthen the production
of coding connoisseurs. Curriculum adjustments are starting to become noticeable
from integrating programming courses within compulsory education (Björkholm &
Engström, 2017; Harlow et al., 2015) to simply establishing an ecosystem of learn-
ing computing (Seow et al., 2019). Pedagogies in computer programming are also
being proposed to facilitate the creation of an effective learning environment. For
instance, games and contests (e.g., Leek Wars, Code Hunt, and Code Fights) were
reviewed to make teaching and learning process of computer programming more
attractive and fun (Combéfis et al., 2016). Aside from aesthetics and real-world sen-
sory data integration, games that require collaboration and participation between
players (e.g., multiplayer collaborative games) were found to be more engaging. The
effective use of game-based learning for teaching programming concepts was also
demonstrated by Mathrani et al. (2016), which is later supported by recent studies
that implemented a game-based programming education (Kiss & Arki, 2017; Garcia
et al., 2019). Other notable teaching strategies and tools in this area of specialization
include multimedia approach (Annamalai & Salam, 2017), block-based visual pro-
gramming environment (Sáez-López et al., 2016), gamification (Ibáñez et al., 2014),
affective tutoring system (Fwa, 2018), and more. In a meta-analysis of 139 stud-
ies from 1965 to 2017 pertaining to teaching and learning computer programming,
instructional approaches such as blended learning, collaboration, game-based learn-
ing, metacognition, and problem solving exhibit moderate to large effects (Scherer
et al., 2020). It is important to note that collaboration in computer programming is
crucial particularly on complex topics and logical problems (Bagley & Chou, 2007),
hence, the use of collaborative learning in computer programming courses (Hayashi
et al., 2015). Although it is similar to cooperative learning, it lacks a more struc-
tured setting where the teacher has total control of the learning environment. Nev-
ertheless, teaching and learning programming languages remains a challenge which
leads to a conclusion that there is still a merit on the findings of Bubica and Boljat

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 Education and Information Technologies

1 3

(2014) that such strategies dot not work in every learning situation. Therefore, the
search for more pedagogical approaches and classroom interventions for teaching
computer programming to enrich the existing knowledge base of ‘what works and
what doesn’t’ is not over (Lye & Koh, 2014).

2.2 � Cooperative learning

One of the under-researched educational approaches that could be integrated with
computer programming education is cooperative learning due to the fact that nov-
ice programmers tend to form their own group discussions during laboratory activi-
ties and after lecture meetings, and often rely on peers when a topic or activity is
difficult (Rahmat et al., 2012). Jacobs et al. (1997) defined cooperative learning
as an “organised and managed groupwork in which students work cooperatively in
small groups to achieve academic as well as affective and social goals”. Drawing
from existing studies, it was exhibited that the completion of cooperative learn-
ing group tasks has been associated with a greater comprehension, higher aca-
demic achievement, and a more positive social skills and attitude (Cohen, 1994;
Slavin, 1991; Asha & Hawi, 2016; Gull & Shehzad, 2015). In a more recent study,
Molla and Muche (2018) evaluated the impact of cooperative learning on students’
achievement and laboratory proficiency and they found a significant learning gain
via a cooperative learning achievement division. In another study (Hebles et al.,
2019), cooperative learning was also found to have a positive, significant influence
on teamwork competence – or the capacity of individuals to integrate themselves
in a team and contribute effectively. For computing students and professionals,
teamwork is one of the most crucial soft skills to have in order to decipher com-
plex problems through technological solutions (Fernández-Sanz et al., 2009). With
decades of evidence, it is clear why there is motivation and interest to incorporate
cooperative learning strategies in various subjects. However, the successful imple-
mentation of cooperative learning is dependent on meeting criterial elements that
promotes cooperation where each individual and all members of the group achieve
academic learning success. First, positive interdependence must be the foundation
of learning activities to establish the feeling among group members that they sink
or swim together – that is, the success and failure of one member is a success and
failure of the group. Moreover, these activities must also permit a sufficient time
for learning as lack thereof will limit the academic benefits of cooperative learn-
ing. Although students operate in a group work format, it is also vital that there is
an equal opportunity for success for each student by requiring them to complete
their own information-processing task. Individual accountability is also crucial to
achieve this element. In addition, face-to-face interaction must also be arranged
between students, and not only between members of the same group. Without these
criterial elements, teachers are merely implementing cooperative group tasks and
not cooperative learning group tasks (Stahl, 1994). To ensure effective coopera-
tive learning activities, educators advocated and used several methods to maximize
achievement such as JT, Learning Together, Teams-Games-Tournaments, and
Cooperative Learning Structures, to name a few (Johnson et al., 2000).

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Education and Information Technologies	

2.3 � The Jigsaw technique

Founded by Aronson et al. (1978), JT is a cooperative learning and an organization
method for classroom activities that promotes learning by making students depend-
ent on each other. Among the cooperative learning methods, JT was selected for
this study because it has been reported as an effective pedagogy for various sub-
jects and academic levels. Karacop and Diken (2017) investigated the effects of JT
towards the cognitive process development of university students in Science Teach-
ing Laboratory Applications (STLA) course. Through the use of instruments such
as the Scientific Process Skill Test and Student Opinion Scale, it was found out that
students from a group that received JT intervention have higher scientific process
skills compared to those students who only received their traditional confirmatory
laboratory approach. Similar findings were demonstrated in the study of Márquez
et al. (2017) where JT was utilized in a Physics course. Learning improvement in
constructing concepts maps was evident on an experimental group that received JT
intervention, although without reaching statistical significance. In a graduate school
level, A. Garcia et al. (2017) examined the implementation of JT to enhance learn-
ing and retention in an Educational Leadership course. This qualitative case study
revealed that graduate students learned more effectively when they are learning col-
laboratively and that they enjoyed learning with smaller parts of the whole topic.
JT has never been evaluated in a computer programming course and this is the first
study to examine its impact towards novice programmers.

3 � Methods

3.1 � Research design

A quasi-experimental research using a nonequivalent control group pretest-posttest
design was conducted to evaluate the impact of jigsaw teaching strategy as an educa-
tional approach in implementing cooperative learning among novice programming
students. This kind of research design is fixated on making comparison between
an experimental group and a nonequivalent group structured like a true experi-
ment, except that this design lacks random assignment and assertion of the order
by which variables occur (Privitera, 2019). Although randomized controlled trials
(RCT) can provide strong evidence of effectiveness even on educational settings
(Connolly et al., 2018), a quasi-experiment design was intentionally selected due to
small sample size, preclusion of ethical issues concerning school interventions at a
classroom level, and constraints brought by university policies. Additionally, Rowe
and Oltmann (2016) strongly asserted that the use of RCT in educational research
is a flawed design choice as educational and clinical contexts differ. Nevertheless,
students who were part of the study chose their preferred class schedule and com-
puter programming professors did not have a control on course assignments and cor-
responding sections to handle. To protect students’ and professors’ rights in research
participation, the study was conducted in accordance with the ethical principles in
the Declaration of Helsinki and of the University.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 Education and Information Technologies

1 3

3.2 � Setting and sample

This study was carried out during the first trimester of the academic year 2019-
2020, from August to November, at FEU Institute of Technology in the City of
Manila, Philippines. The university has a 4-year information technology program
with four specializations such as Animation and Game Development (BSIT-AGD),
Web and Mobile Application Development (BSIT-WMA), Digital Arts (BSIT-DA),
and Business Analytics and/or Service Management (BSIT-SMBA). All specializa-
tions have a computer programming course, both lecture (CCS0003) and laboratory
classes (CCS0003L), set to teach freshmen on how to acquire logic and design skills
in solving computer problems using conventional techniques such as flowcharting
and/or pseudo-coding, and basic programming concepts such as basic input and
output, conditional and repetition control structures, and array. The same syllabus,
instructional materials, and online modules in a learning management system are
strictly used by various professors across specializations. A total of 786 computer
programming students scattered in 24 sections were enrolled during the first tri-
mester. Due to some restrictions of intervention enrollment (e.g., university policy),
only two sections were recruited. Each section (N = 40) was assigned either as the
experimental group or the nonequivalent group. Although the same syllabus outline
was used for both groups, a separate instructional guide outlining how to deliver the
jigsaw teaching strategy in a programming course to the experimental group was
developed. For most Jigsaw activities, concepts from Design Thinking curriculum
applied in Higher Education Institutions (Revano & Garcia, 2020) were borrowed to
have a more engaging classroom discussions and activities.

3.3 � Learning intervention

The CCS0003 and CCS0003L are basic programming courses focused on using
C++ programming language that aims to establish students’ foundational knowl-
edge in computer programming. Because these courses are the first among many
programming courses and prerequisite to many professional and major courses,
the acquired knowledge from these courses dictates the destiny and experiences
of students in the university. Additionally, students’ first encounter with program-
ming learning session has been proven to produce confusion, frustration and bore-
dom (Bosch et al., 2013). The importance of the introductory programming course
therefore calls for a teaching strategy that could foster active learning and improve
academic performance. As reviewed, cooperative learning through the use of JT
is a prospective pedagogy to achieve these goals. With such a new strategy to be
implemented in a course, it results to the development of an intervention plan. The
development of the revised syllabus and corresponding classroom activities is a tes-
tament of a meticulous preparation for the integration of cooperative learning tech-
nique which separates it to the traditional group learning (Jacobs, 1997). Moreover,
the formation of groups followed validated strategies for doing collaborative works
in the context of computer programming (Tobar et al., 2011). Table 1 shows the

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Education and Information Technologies	

Table 1   Schedule and description of jigsaw-based intervention for computer programming

Week/s Course Modules and Subtopics for Jigsaw Lecture Laboratory

1 Module 1. Introduction to Programming
Concepts

 History of Computer Programming
 Programming Terminologies
 Low Level vs High Level Languages
 Procedural vs Object-Oriented Program-

ming
 Steps in Program Development

Class Orientation
Lecture Discussion
Assignment

Jigsaw Activity
Short Quiz Assessment

2-3 Module 2. Program Logic Design and
Formulation

 Algorithm
 Pseudocode
 Flowchart
 Linear, Conditional, and Repetition

Problems

Jigsaw Activity
Lecture Discussion
Seatwork

Short Quiz Assessment
Laboratory Activity

4-5 Module 3. Introduction to C++ Pro-
gramming

 C++ Programming Environment
 The main() Function
 Structure of C++ Program
 Elements of a C++ Program
 Implicit and Explicit Type Casting
 Types, Variables, Constants, and Arith-

metic

Lecture Discussion
Jigsaw Activity
Group Presentation

Short Quiz Assessment
Laboratory Activity

6 Module 4. Basic Input/Output State-
ments

 Input/Output Streams
 cin and cout statement
 Output Formatting
 Mathematical Library Function

Lecture Discussion
Long Quiz Assessment
Assignment

Jigsaw Activity
Laboratory Activity

7 Midterm Examination
8-9 Module 5. Conditional Control Struc-

tures
 If single-selection structure
 If/else double-selection structure
 Nested If structure
 Switch Statement

Review Lesson
Jigsaw Activity
Lecture Discussion

Short Quiz Assessment
Laboratory Activity

10-11 Module 6. Repetition Control Structure
 for Loop
 do-while Loop
 while Loop
 break and continue statements

Jigsaw Activity
Lecture Discussion
Seatwork

Short Quiz Assessment
Laboratory Activity

12-13 Module 7. Array Data Structure
 One-Dimensional Array
 Declaration and Initialization of Arrays
 Accessing Array Elements
 Two-Dimensional Array

Jigsaw Activity
Role-Play Activity
Lecture Discussion
Seatwork

Long Quiz Assessment
Laboratory Activity

14 Final Examination

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 Education and Information Technologies

1 3

course modules for the 14-week intervention (equivalent to one trimester) of JT as
an approach of cooperative learning in computer programming.

Each module has a corresponding Jigsaw activity in either its lecture or labora-
tory session. To integrate JT in learning activities, the class is first divided into small
heterogeneous groups of four to six students called “Expert” groups. The number of
groups is dependent on lesson complexity since each lesson is divided into subtopics
and each subtopic is assigned to an expert group (the harder the lesson is, the more
subtopics and groups are formed). Therefore, the number of expert groups created
is equal to the number of subtopics (puzzle) per lesson to ensure the whole cover-
age of the module. Each puzzle is distributed to an expert group where the assigned
leader (randomly, voluntarily, or selected based on readiness, interest, or knowledge)
facilitates the learning process of the group. To apply JT in Module 1: Introduc-
tion to Programming Concepts, for instance, History of Computer Programming
subtopic is assigned to Group A, Programming Terminologies is assigned to Group
B, and so on. After a substantial amount of time given to master the subtopic, new
“Jigsaw” groups are formed consisting of one representative from each expert group
who contributes information about the subtopic learned from their respective previ-
ous groups. Figure 1 visually describes the usage of JT where each letter represents
a student and each block represents a group.

3.4 � Research instrument

Data were collected using a survey containing a demographic questionnaire, Atti-
tude Scale of Computer Programming Learning (ASCOPL), and Computer Pro-
gramming Self-Efficacy Scale (CPSES). Demographic information included stu-
dents’ age, gender, program specialization, General Point Average (GPA) on Senior
High School, and programming experience. ASCOPL, a 5-point Likert-type scale
developed by (Korkmaz & Altun, 2014), was incorporated in the questionnaire to
measure students’ attitude towards learning computer programming. This validated

Fig. 1   Jigsaw technique as a cooperative learning strategy

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Education and Information Technologies	

instrument is composed of 20 items grouped into Willingness, Negativity, and
Necessity, with correlation coefficients ranging from 0.611 and 0.671. While most
constructs are positive, there are few negative items in ASCOPL that require reverse
scoring. On the other hand, CPSES is an evaluation tool based on a computational
thinking framework to assess learners’ computer programming self-efficacy (Tsai
et al., 2019). This validated tool is composed of five subscales such as Debug, Con-
trol, Algorithm, Logical Thinking and Cooperation, with a reliability alpha ranging
from 0.84 to 0.96. Combining the instruments together yielded a Cronbach’s alpha
of 0.89 for the total scale. Although there are a number of factors known for influ-
encing learning success, attitude and self-efficacy are considered more important
than others (Anastasiadou & Karakos, 2011).

3.5 � Data collection and analysis

The survey questionnaire was distributed in the programming course classroom in
an online learning management system where both professors and students were
enrolled. The experimental group completed the pre-test questionnaire on August
16, 2019, and both experimental and nonequivalent groups completed the post-test
questionnaire on November 22, 2019. The same questionnaire was given to both
groups, and the data collection was facilitated by a professor who was not part of
the intervention delivery. With consent and approval, long quiz scores per course
modules for knowledge gain analysis were also collected from the professors’ grade-
book. However, within-group comparison of scores was excluded from the analy-
sis and only the between-group comparison was performed. The collected data was
analyzed using IBM SPSS Statistics 26.0 (IBM Corporation, USA). Demographic
information was reported and data distribution was tested using descriptive statis-
tics. Although the results presented are from parametric tests due to similar signifi-
cance with non-parametric tests, both statistical tests were used since self-efficacy
and knowledge gain did not meet the normality assumption. For testing the homoge-
neity of participants, Fisher’s exact test, chi-square test, and Independent t-test were
used. Lastly, the comparison of post-test questionnaire and knowledge gain between
the groups were measured using Independent t-test and Mann Whitney U test while
the effect of jigsaw teaching strategy on a programming a course within the experi-
mental group was examined using paired t-test and Wilcoxon signed rank test. There
were no dropouts throughout the course of the study, hence, data from 40 students
per group was utilized for analysis.

4 � Results and discussions

The purpose of this study was to investigate the effect of a cooperative learning
approach using JT towards novice programmers in a basic programming course.
Using a quasi-experimental research with a nonequivalent control group pretest-
posttest design, JT was utilized in a 14-week intervention to analyze the attitude,
self-efficacy, and knowledge gain of students. A total of 80 students participated

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 Education and Information Technologies

1 3

in the study (Table 2) where half was part of the experimental group and the
other half was part of the nonequivalent group. The participants were dominated
by male students (93.75%) and the overall mean age was 19.08 years. Although
the participants were most male, an empirical analysis demonstrates that gender
difference may not come into play at all when it comes to computer program-
ming (Akinola, 2015). Nevertheless, there were more students with less experi-
ence on computer programming (83.75%) although the majority of them received
an 86-90 GPA (50.0%). Upon testing, the homogeneity between experimental and
nonequivalent groups was confirmed since their characteristics were not signifi-
cantly different with one another.

Upon testing the impact of cooperative learning using JT when teaching com-
puter programming to the experimental group of novice programmers, the results
(Fig. 2) show mixed findings. On the attitude factor, the averaged willingness score
increased from 2.90 ± 0.87 to 4.53 ± 0.51, p = 0.000, the average negativity score
decreased from 4.00 ± 0.75 to 2.48 ± 1.06, p = 0.000, and the average necessity score
increased from 3.35 ± 1.03 to 4.45 ± 0.71, p = 0.000. On the self-efficacy factor, logi-
cal thinking increased from 3.30 ± 0.99 to 4.43 ± 0.71, p = 0.000, algorithm increased
from 3.25 ± 0.95 to 4.10 ± 1.06, p = 0.002, debug increased from 3.35 ± 1.03 to
4.10 ± 1.13, p = 0.004, control increased from 3.88 ± 0.91 to 4.08 ± 0.94, p = 0.345,
and cooperation increased from 3.40 ± 1.03 to 4.13 ± 0.76, p = 0.000. Among the
variables, only control under self-efficacy was not significant.

Table 2   Homogeneity and characteristics of participants (N = 80)

Characteristics Exp. Group
M ± SD or n (%)

Non. Group
M ± SD or n (%)

χ2 or t p Value

Age (years) 19.22 ± 1.44 18.94 ± 1.23 0.44 0.631
Gender

 Male 37 (92.5) 38 (95.0) 2.87 0.452
 Female 3 (7.5) 2 (5.0)

Specialization
 Animation and Game Development 10 (25.0) 19 (47.5) 3.24 0.128
 Web and Mobile Application Development 5 (12.5) 6 (15.0)
 Digital Arts 9 (22.5) 7 (17.5)
 Business Analytics and/or Service Manage-

ment
16 (40.0) 8 (20.0)

General Point Average
 75-80 3 (7.5) 6 (15.0) 1.96 0.211
 81-85 11 (27.5) 8 (20.0)
 86-90 21 (52.5) 19 (47.5)
 91-95 4 (10.0) 6 (15.0)
 96-100 1 (2.5) 1 (2.5)

Programming Experience
 Yes 8 (20.0) 5 (12.5) 1.44 0.209
 No 32 (80.0) 35 (87.5)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Education and Information Technologies	

Aside from the within-group comparison of attitude and self-efficacy, the
same variables with an inclusion of knowledge gain were analyzed between the
two groups (See Table 3). On the attitude factor, the mean willingness score
in the experimental group (4.53 ± 0.51) was higher than in the control group

Fig. 2   Within-group comparison of attitude and self-efficacy using cooperative learning (N = 40)

Table 3   Between-group comparison of attitude, self-efficacy, and knowledge gain using cooperative
learning (N = 80)

M Mean, SD Standard Deviation. Each quiz was a 100-item assessment per module

Control Group
(M ± SD)

Experimental Group
(M ± SD)

Difference
(M ± SD)

t (p Value)

Attitude
 Willingness 3.45 ± 0.90 4.53 ± 0.51 1.08 ± 1.19 5.78 (0.000)
 Negativity 2.93 ± 1.19 2.50 ± 1.06 0.45 ± 1.18 2.24 (0.020)
 Necessity 3.90 ± 1.19 4.45 ± 0.71 0.55 ± 1.40 2.49 (0.017)

Self-Efficacy
 Logical Thinking 3.45 ± 1.08 4.43 ± 0.71 0.98 ± 1.05 5.87 (0.000)
 Algorithm 3.68 ± 1.19 4.10 ± 1.06 0.43 ± 1.39 1.93 (0.061)
 Debug 3.88 ± 0.97 4.10 ± 1.13 0.23 ± 1.69 0.84 (0.404)
 Control 3.63 ± 0.95 4.08 ± 0.94 0.45 ± 1.59 1.78 (0.080)
 Cooperation 3.63 ± 0.98 4.13 ± 0.76 0.50 ± 1.50 2.11 (0.042)

Knowledge Gain
 Introduction to Programming

Concepts
60.05 ± 14.97 73.08 ± 11.35 13.03 ± 19.33 4.26 (0.000)

 Program Logic Design and
Formulation

80.50 ± 13.36 80.70 ± 12.25 0.20 ± 18.62 0.68 (0.946)

 Introduction to C++ Program-
ming

52.50 ± 8.21 71.65 ± 12.10 19.15 ± 13.44 9.01 (0.000)

 Basic Input/Output Statements 55.38 ± 8.16 75.38 ± 11.59 20.00 ± 12.68 9.98 (0.000)
 Conditional Control Structures 70.85 ± 9.93 72.45 ± 11.66 1.60 ± 14.55 0.67 (0.491)
 Repetition Control Structure 80.23 ± 9.94 84.08 ± 10.35 3.85 ± 14.61 1.67 (0.104)
 Array Data Structure 43.73 ± 10.17 50.48 ± 15.18 6.75 ± 18.57 2.30 (0.270)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 Education and Information Technologies

1 3

(3.45 ± 0.90), the mean negativity score in the experimental group was lower
than in the control group, and the mean necessity score in the experimental group
(4.45 ± 0.71) was higher than in the control group (3.90 ± 1.19). All of these were
statistically significant. On the self-efficacy factor, the mean scores in the experi-
mental group in terms of logical thinking, algorithm, debug, control, and cooper-
ation were all higher than in the control group. Although the experimental group
consistently yielded higher scores, only logical thinking and cooperating were
statistically significant (p < 0.05). The experimental group likewise consistently
yielded higher scores on all of the modules. However, statistically significant dif-
ferences were only noticeable in modules 1, 3, and 4 (p = 0.000) (Fig. 3).

After a series of cooperative learning activities using JT, the attitude of nov-
ice programmers towards the course was significantly more positive. The modi-
fication of the teaching instruction, from individual-based to cooperative-based
learning tasks, recruited a positive change in students’ programming learning
experience which has a direct influence to their attitude (Yang et al., 2018). One
possible explanation is the fear factor stemmed from the nature or complexity of
computer programming itself. Naturally, novice programmers are afraid of learn-
ing programming because they perceived this uncharted territory as a difficult
subject (Katai, 2015; Pendergast, 2006). Solving machine problems alone would
only aggravate the situation particularly for underperforming students, and inhibit
the likelihood of initiating discussions or asking questions (Bergin & Reilly,
2005). Unfortunately, the fear factor also leads to a lack of comfort, a sense of
confusion, inability to focus, and questioning one’s ability when not eliminated.
The feeling of negativity is also counter-productive to learning, and may also
result in a dislike of programming (Simon et al., 2006). Thus, the significant posi-
tive change in attitude of novice programmers may be explained by the sense of
comfort received from team members (Rogerson & Scott, 2010). According to
Wilson and Shrock (2001), comfort level was the most reliable predictor of suc-
cess in an introductory college computer science course. Therefore, the impact
of cooperative learning approach in the attitude of novice programmers has huge

Fig. 3   Cooperative learning activity using design thinking and presentation of final outputs

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Education and Information Technologies	

implications for computer programming education since attitude has a significant
positive correlation with the academic achievement of students (Baser, 2013).

In addition, the self-efficacy of novice programmers was also noticeably higher
after the course intervention. Nevertheless, only logical thinking and coopera-
tion were consistently significant, and only control was consistently not significant
within- and between-groups. First, cooperation is an important factor because it pre-
pares students in real-life software projects where coordinated efforts of the mem-
bers of one or more teams are needed due to the increasing complexity of software
projects (Sancho-Thomas et al., 2009). The division of programming tasks and con-
cepts using JT made novice programmers to believe that they can work with oth-
ers and make use of these divisions to enhance programming efficiently. There is
also something to be learned from logical thinking being significant while algo-
rithm was not. It could only mean that cooperative tasks direct novice programmers
towards the understanding of basic programming concepts but not the development
of algorithmic coding skills. Therefore, programming teachers must exert more time
in sharing their skills and knowledge when teaching more complex topics because
cooperative learning approach becomes less useful when students cannot acquire
the knowledge they need to share to other members of the group on their own. The
results of knowledge gain analysis between-groups reinforce this finding since the
use of JT was only significant on modules with easy-to-learn concepts (e.g., Intro-
duction to Programming Concepts, Introduction to C++ Programming, and Basic
Input/Output Statements). Nonetheless, there is still a positive effect of cooperative
learning using JT towards the academic achievement of novice programmers, which
supports the literature in computer literacy (Akseer et al., 2017).

5 � Conclusion

In this paper, the effect of cooperative learning approach through jigsaw teaching
strategy on the attitude, self-efficacy, and knowledge gain of novice programmers
was examined using a quasi-experimental research with a nonequivalent control
group pretest-posttest design. The major findings from this study were that (1) atti-
tude and self-efficacy (with an exemption of control) significantly increased after
completing the course, and (2) the level of attitude, self-efficacy (in terms of logi-
cal thinking and cooperation), and some modules (Module 1: Introduction to Pro-
gramming Concepts, Module 3: Introduction to C++ Programming, and Module
4: Basic Input/Output Statements) in the knowledge gain was significantly higher
in students who were exposed with cooperative learning approach compared with
those who were not. To achieve these positive results, several considerations must
be kept in mind when implementing cooperative learning approach in a computer
programming course. First, there are essential elements of cooperative learning that
must be met in order to differentiate cooperative learning group tasks from coopera-
tive group tasks (Stahl, 1994). Moreover, preparation of instructional tools, syllabus,
and other necessary materials must be prepared ahead of time to smoothly integrate
cooperative tasks since the modification of the teaching instruction, from individ-
ual-based to cooperative-based learning tasks, requires a great amount of time and

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 Education and Information Technologies

1 3

effort. Despite positive significant results, programming teachers must not also be
dependent on cooperative tasks and should reinforce knowledge dissemination par-
ticularly on complex topics. It was found out that cooperative learning in a computer
programming course becomes less useful when students cannot acquire the knowl-
edge they need to share to other members of the group on their own (e.g., Module 7:
Array Data Structure).

Future research may replicate the study by addressing certain limitations. First,
the study was only conducted for one trimester (14 weeks) even though there is
another course of programming on the next trimester. The next part of the course
is focused on much more complex programming concepts which presents an oppor-
tunity to validate whether cooperative learning only works for simple and easy-to-
learn programming topics. However, this realization only occurred after finding out
that knowledge gain was significantly higher only on non-complex modules. Moreo-
ver, due to some restrictions of intervention enrollment, the study’s population size
was limited to 80 students although there were 786 computer programming students
enrolled during the time of the study. Future study could also validate whether a
cooperative learning approach will work on advanced programmers too or not.
There is a possibility that, at this stage, advanced programmers may prefer to work
on their own rather than join a group. On the other hand, other cooperative learn-
ing methods aside from Jigsaw could also be utilized as a technique such as Learn-
ing Together, Teams-Games-Tournaments, and Cooperative Learning Structures, to
name a few (Johnson et al., 2000). By using other cooperative learning methods, it
might encourage and convince educational institutions, curriculum developers, and
programming professors to utilize such pedagogy as an alternative knowledge deliv-
ery system of computer programming education.

With all this in mind, there is still a potential in using cooperative learning in
computer programming education to make learning become more meaningful and
with ease even for a subject that is perceived as difficult.

References

Akinola, S. O. (2015). Computer programming skill and gender difference: An empirical study. American
Journal of Scientific and Industrial Research, 7(1), 1–9.

Akseer, N., Al-Gashm, S., Mehta, S., Mokdad, A., & Bhutta, Z. A. (2017). Global and regional trends in
the nutritional status of young people: A critical and neglected age group. Annals of the New York
Academy of Sciences, 1393(1), 3–20. https://​doi.​org/​10.​1111/​nyas.​13336.

Altun, S. (2015). The effect of cooperative learning on students’ achievement and views on the science
and technology course. International Electronic Journal of Elementary Education, 7(3), 451–468.

Anastasiadou, S. D., & Karakos, A. S. (2011). The beliefs of electrical and computer engineering Stu-
dents’ regarding computer programming. International Journal of Technology, Knowledge & Soci-
ety, 7(1), 37–51.

Annamalai, S., & Salam, S. N. A. (2017). Facilitating Programming Comprehension for Novice Learners
with Multimedia Approach: A Preliminary Investigation. In The 2nd International Conference on
Applied Science and Technology. AIP Publishing. https://​doi.​org/​10.​1063/1.​50053​62.

Aronson, E., et al. (1978). The jigsaw classroom (The jigsaw classroom.). Sage.
Asha, I. K., & Hawi, A. M. A. (2016). The impact of cooperative learning on developing the sixth grade

students decision-making skill and academic achievement. Journal of Education and Practice,
7(10), 60–70.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Education and Information Technologies	

Bagley, C. A., & Chou, C. C. (2007). Collaboration and the importance for novices in learning java com-
puter programming. Paper presented at the Proceedings of the 12th annual SIGCSE conference on
Innovation and technology in computer science education, Dundee, Scotland.

Barr, V., & Guzdial, M. (2015). Advice on teaching CS, and the learnability of programming languages.
Communications of the ACM, 58(3), 8–9. https://​doi.​org/​10.​1145/​27163​45.

Baser, M. (2013). Attitude, gender and achievement in computer programming. Middle-East Journal of
Scientific Research, 14(2), 248–255.

Bergin, S., & Reilly, R. (2005). The influence of motivation and comfort-level on learning to program.
17th Workshop of the Psychology of Programming Interest Group.

Björkholm, E., & Engström, S. (2017). Discourses of programming teaching within compulsory educa-
tion – fixed or changeable? In European Science Education Research Association 2017 Conference,
Dublin, Ireland.

Bosch, N., D’Mello, S., & Mills, C. (2013). What Emotions Do Novices Experience during Their First
Computer Programming Learning Session? In Berlin, Heidelberg (pp. 11-20, Artificial Intelligence
in Education): Springer Berlin Heidelberg.

Bringula, R. P., Tolentino, M. A. A., Manabat, G. M. A., & Torres, E. L. (2012). Effects of attitudes
towards Java programming on novice programmers’ errors. Philippine Information Technology
Journal, 5(1), 29–34.

Brito, M. A., & de Sá-Soares, F. (2014). Assessment frequency in introductory computer programming
disciplines. Computers in Human Behavior, 30, 623–628. https://​doi.​org/​10.​1016/j.​chb.​2013.​07.​044.

Bubica, N., & Boljat, I. (2014). Teaching of novice programmers: strategies, programming languages and
predictors. In International Conference on Information Technology and Development of Education,
Pavlović, Milan.

Chang, K.-E., Wu, L.-J., Weng, S.-E., & Sung, Y.-T. (2012). Embedding game-based problem-solving
phase into problem-posing system for mathematics learning. Computers & Education, 58(2), 775–
786. https://​doi.​org/​10.​1016/j.​compe​du.​2011.​10.​002.

Cohen, E. G. (1994). Restructuring the classroom: Conditions for productive small groups. Review of
Educational Research, 64, 1–35.

Combéfis, S., Beresnevicius, G., & Dagiene, V. (2016). Learning programming through games and con-
tests: Overview, characterisation and discussion. Olympiads in Informatics, 10, 39–60. https://​doi.​
org/​10.​15388/​ioi.​2016.​03.

Connolly, P., Keenan, C., & Urbanska, K. (2018). The trials of evidence-based practice in education: A
systematic review of randomised controlled trials in education research 1980–2016. Educational
Research, 60(3), 276–291. https://​doi.​org/​10.​1080/​00131​881.​2018.​14933​53.

Delsika Pramata, S., Sukmawati, R. A., & Iskandar, Z. (2018) The Relationship Between Mathemati-
cal Ability and Programming Ability of Computer Science Education Students. In 1st International
Conference on Creativity, Innovation and Technology in Education (IC-CITE 2018), 2018/12:
Atlantis Press. https://​doi.​org/​10.​2991/​iccite-​18.​2018.​12.

Facey-Shaw, L., & Golding, P. (2005). Effects of Peer Tutoring and Attitude on Academic Performance
of First Year Introductory Programming Students. In Proceedings Frontiers in Education 35th
Annual Conference, 19-22 Oct. 2005 (pp. S1E-S1E). https://​doi.​org/​10.​1109/​FIE.​2005.​16121​75.

Faja, S. (2014). Evaluating effectiveness of pair programming as a teaching tool in programming courses.
Information Systems Education Journal, 12(6), 36–45.

Fernández-Sanz, L., Lacuesta, R., Palacios, G., Cuadrado-Gallego, J. J., & Villalba, M. T. (2009). High-
lighting teamwork benefits for computing students and professionals. In World Conference on Edu-
cational Multimedia, Hypermedia and Telecommunications.

Fwa, H. L. (2018). An architectural design and evaluation of an affective tutoring system for novice pro-
grammers. International Journal of Educational Technology in Higher Education, 15(1), 38. https://​
doi.​org/​10.​1186/​s41239-​018-​0121-2.

Garcia, A., Abrego, J., & Reguenes, R. (2017). Using the Jigsaw method for meaningful learning to
enhance learning and rentention in an educational leadership graduate school course. Global Jour-
nal of Human-Social Science, 17(5), 5–16.

Garcia, M. B., Revano, T. F., Habal, B. G. M., Contreras, J. O., Enriquez, J. B. R., De Angel, R. M., &
Lagman, A. C. (2019). Game development as a pedagogical methodology in learning related ICT
skills: Perspectives of freshmen from FEU Institute of Technology. International Journal of Simula-
tion: Systems, Science & Technology, 20(2). https://​doi.​org/​10.​5013/​IJSSST.​a.​20.​S2.​02.

Gull, F., & Shehzad, S. (2015). Effects of cooperative learning on students’ academic achievement. Jour-
nal of Education and Learning, 9(3), 246–255.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 Education and Information Technologies

1 3

Harlow, D. B., Dwyer, H., Hansen, A. K., Hill, C., Iveland, A., Leak, A. E., et al. (2015). Computer pro-
gramming in elementary and middle school: Connections across content. In Improving K-12 STEM
education outcomes through technological integration (pp. 337–361). IGI Global.

Harris, J. (2014). Testing programming aptitude in introductory programming courses. Journal of Com-
puting Sciences in Colleges, 30(2), 149–156.

Hayashi, Y., Fukamachi, K., & Komatsugawa, H. (2015). Collaborative Learning in Computer Program-
ming Courses That Adopted the Flipped Classroom. In 2015 International Conference on Learn-
ing and Teaching in Computing and Engineering, 9-12 April 2015 (pp. 209-212). https://​doi.​org/​10.​
1109/​LaTiCE.​2015.​43.

Hebles, M., Yaniz-Álvarez-de-Eulate, C., & Jara, M. (2019). Impact of cooperative learning on teamwork
competence. Academia Revista Latinoamericana de Administración, 32(1), 93–106. https://​doi.​org/​
10.​1108/​ARLA-​10-​2018-​0217.

Herrmann, K. J. (2013). The impact of cooperative learning on student engagement: Results from an
intervention. Active Learning in Higher Education, 14(3), 175–187. https://​doi.​org/​10.​1177/​14697​
87413​498035.

Ibáñez, M., Di-Serio, A., & Delgado-Kloos, C. (2014). Gamification for engaging computer science stu-
dents in learning activities: A case study. IEEE Transactions on Learning Technologies, 7(3), 291–
301. https://​doi.​org/​10.​1109/​TLT.​2014.​23292​93.

Jacobs, G. M. (1997). Cooperative learning or just grouping students: The difference makes a difference.
Paper presented at the RELC Seminar.

Jacobs, G. M., Lee, C., & Ng, M. (1997). Co-operative learning in the thinking classroom. Paper pre-
sented at the International Conference on Thinking.

Johnson, D., Johnson, R., & Stanne, M. (2000). Cooperative learning methods: A meta-analysis. Univer-
sity of Minnesota.

Karacop, A., & Diken, E. H. (2017). The effects of Jigsaw technique based on cooperative learning on
prospective science teachers’ science process skill. Journal of Education and Practice, 8(6), 86–97.

Katai, Z. (2015). The challenge of promoting algorithmic thinking of both sciences- and humanities-
oriented learners. Journal of Computer Assisted Learning, 31(4), 287–299. https://​doi.​org/​10.​1111/​
jcal.​12070.

Kiss, G., & Arki, Z. (2017). The influence of game-based programming education on the algorithmic
thinking. Procedia - Social and Behavioral Sciences, 237, 613–617. https://​doi.​org/​10.​1016/j.​
sbspro.​2017.​02.​020.

Kori, K., Pedaste, M., Leijen, Ä., & Tõnisson, E. (2016). The role of programming experience in ICT
students’ learning motivation and academic achievement. International Journal of Information and
Education Technology, 6(5), 331–337.

Korkmaz, Ö., & Altun, H. (2014). A validity and reliability study of the attitude scale of computer pro-
gramming learning (ASCOPL). MEVLANA International Journal of Education (MIJE), 4(1),
30–43. https://​doi.​org/​10.​13054/​mije.​13.​73.4.1.

Krpan, D., Mladenović, S., & Rosić, M. (2015). Undergraduate programming courses, students’ percep-
tion and success. Procedia - Social and Behavioral Sciences, 174, 3868–3872. https://​doi.​org/​10.​
1016/j.​sbspro.​2015.​01.​1126.

Kwon, K. (2017). Novice programmer’s misconception of programming reflected on problem-solving
plans. International Journal of Computer Science Education in Schools, 1(4), 14.

Law, N., Woo, D., de la Torre, J., & Wong, G. (2018). A global framework of reference on digital literacy
skills for Indicator 4.4.2. UNESCO Institute for Statistics.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through
programming: What is next for K-12? Computers in Human Behavior, 41, 51–61. https://​doi.​org/​10.​
1016/j.​chb.​2014.​09.​012.

Márquez, L. M. T., Llinás, J. G., & Macías, F. S. (2017). Collaborative learning: Use of the jigsaw tech-
nique in mapping concepts of physics. Problems of Education in the 21st Century, 75(1), 92–101.

Mathrani, A., Christian, S., & Ponder-Sutton, A. (2016). PlayIT: Game based learning approach for
teaching programming concepts. Educational Technology & Society, 19(2), 5–17.

Molla, E., & Muche, M. (2018). Impact of cooperative learning approaches on students’ academic
achievement and laboratory proficiency in biology subject in selected rural schools, Ethiopia. Edu-
cation Research International, 2018, 6202484. https://​doi.​org/​10.​1155/​2018/​62024​84.

Parveen, Q., Yousuf, M. I., & Mustafa, S. (2017). An experimental study on the effect of cooperative
learning on students’ academic achievement and students’ perceptions towards cooperative learning.
The Anthropologist, 27(1-3), 69–76. https://​doi.​org/​10.​1080/​09720​073.​2017.​13116​70.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Education and Information Technologies	

Pendergast, M. O. (2006). Teaching introductory programming to IS students: Java problems and pit-
falls. Journal of Information Technology Education, 5, 491–515.

Prather, J., Pettit, R., McMurry, K., Peters, A., Homer, J., & Cohen, M. (2018). Metacognitive Dif-
ficulties Faced by Novice Programmers in Automated Assessment Tools. Paper presented at the
Proceedings of the 2018 ACM Conference on International Computing Education Research,
Espoo, Finland.

Privitera, G. J. (2019). Quasi-Experimental and Single-Case Experimental Designs. In Research
Methods for the Behavioral Sciences: SAGE Publications.

Rahmat, M., Shahrani, S., Latih, R., Yatim, N. F. M., Zainal, N. F. A., & Rahman, R. A. (2012).
Major problems in basic programming that influence student performance. Procedia - Social and
Behavioral Sciences, 59, 287–296. https://​doi.​org/​10.​1016/j.​sbspro.​2012.​09.​277.

Revano, T. F., & Garcia, M. B. (2020). Manufacturing Design Thinkers in Higher Education Institu-
tions: The Use of Design Thinking Curriculum in the Education Landscape. In 12th Interna-
tional Conference on Humanoid, Nanotechnology, Information Technology, Communication and
Control, Environment and Management (HNICEM), IEEE.

Rogerson, C., & Scott, E. (2010). The fear factor: How it affects students learning to program in a ter-
tiary environment. Journal of Information Technology Education, 9, 147–171.

Rowe, M., & Oltmann, C. (2016). Randomised controlled trials in educational research: Ontologi-
cal and epistemological limitations. African Journal of Health Professions Education, 8(1), 6–8.
https://​doi.​org/​10.​7196/​AJHPE.​2016.​v8i1.​683.

Sáez-López, J.-M., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming lan-
guages integrated across the curriculum in elementary school: A two year case study using
“scratch” in five schools. Computers & Education, 97, 129–141. https://​doi.​org/​10.​1016/j.​compe​
du.​2016.​03.​003.

Sancho-Thomas, P., Fuentes-Fernández, R., & Fernández-Manjón, B. (2009). Learning teamwork skills
in university programming courses. Computers & Education, 53(2), 517–531. https://​doi.​org/​10.​
1016/j.​compe​du.​2009.​03.​010.

Sarpong, K. A.-M., Arthur, J. K., & Amoako, P. Y. O. (2013). Causes of failure of students in computer
programming courses: The teacher – Learner perspective. International Journal of Computer Appli-
cations, 77(12), 27–32.

Sawyer, J., & Obeid, R. (2017). Cooperative and collaborative learning: Getting the best of both methods.
In A. S. R. Obeid, C. Shane-Simpson, & P. J. Brooks (Eds.), How we teach now: The GSTA guide to
student-centered teaching. Society of the Teaching of Psychology.

Scherer, R., Siddiq, F., & Sánchez Viveros, B. (2020). A meta-analysis of teaching and learning computer
programming: Effective instructional approaches and conditions. Computers in Human Behavior,
109, 106349. https://​doi.​org/​10.​1016/j.​chb.​2020.​106349.

Seow, P., Looi, C.-K., How, M.-L., Wadhwa, B., & Wu, L.-K. (2019). Educational policy and implemen-
tation of computational thinking and programming: Case study of Singapore. In S.-C. Kong & H.
Abelson (Eds.), Computational thinking education (pp. 345–361). Springer Singapore.

Simon, Fincher S., Robins, A., Baker, B., Box, I., Cutts, Q., et al. (2006). Predictors of success in a
first programming course. Paper presented at the Proceedings of the 8th Australasian Conference on
Computing Education - Volume 52, Hobart, Australia.

Slavin, R. E. (1991). Synthesis of research on cooperative learning. Educational Leadership, 48, 71–82.
Stahl, R. J. (1994). The essential elements of cooperative learning in the classroom. Educational

Resources Information Center.
Tobar, C. M., Adán-Coello, J. M., Faria, E. S. J. D., Menezes, W. S. D., & Freitas, R. L. D. (2011). Form-

ing groups for collaborative learning of introductory computer programming based on Students’
programming skills and learning styles. International Journal of Information and Communication
Technology Education, 7(4), 34–46. https://​doi.​org/​10.​4018/​jicte.​20111​00104.

Tsai, C.-Y. (2019). Improving students’ understanding of basic programming concepts through visual pro-
gramming language: The role of self-efficacy. Computers in Human Behavior, 95, 224–232. https://​
doi.​org/​10.​1016/j.​chb.​2018.​11.​038.

Tsai, M.-J., Wang, C.-Y., & Hsu, P.-F. (2019). Developing the computer programming self-efficacy scale
for computer literacy education. Journal of Educational Computing Research, 56(8), 1345–1360.
https://​doi.​org/​10.​1177/​07356​33117​746747.

Umapathy, K., & Ritzhaupt, A. D. (2017). A meta-analysis of pair-programming in computer program-
ming courses: Implications for educational practice. ACM Transactions on Computing Education,
17, 16. https://​doi.​org/​10.​1145/​29962​01.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 Education and Information Technologies

1 3

Veerasamy, A. K., D’Souza, D., & Laakso, M.-J. (2016). Identifying novice student programming mis-
conceptions and errors from summative assessments. Journal of Educational Technology Systems,
45(1), 50–73. https://​doi.​org/​10.​1177/​00472​39515​627263.

Waite, W. M., Jackson, M. H., Diwan, A., & Leonardi, P. M. (2004). Student culture vs group work in
computer science. SIGCSE Bull., 36(1), 12–16. https://​doi.​org/​10.​1145/​10281​74.​971308.

Wilson, B. C., & Shrock, S. (2001). Contributing to success in an introductory computer science course:
A study of twelve factors. SIGCSE Bull., 33(1), 184–188. https://​doi.​org/​10.​1145/​366413.​364581.

Yang, J., Wong, G. K. W., & Dawes, C. (2018). An exploratory study on learning attitude in computer
programming for the twenty-first century. In L. Deng, W. W. K. Ma, & C. W. R. Fong (Eds.), New
Media for Educational Change, Singapore, 2018 (pp. 59–70). Springer Singapore.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1.

2.

3.

4.

5.

6.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center
GmbH (“Springer Nature”).
Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers
and authorised users (“Users”), for small-scale personal, non-commercial use provided that all
copyright, trade and service marks and other proprietary notices are maintained. By accessing,
sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of
use (“Terms”). For these purposes, Springer Nature considers academic use (by researchers and
students) to be non-commercial.
These Terms are supplementary and will apply in addition to any applicable website terms and
conditions, a relevant site licence or a personal subscription. These Terms will prevail over any
conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription (to
the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of
the Creative Commons license used will apply.
We collect and use personal data to provide access to the Springer Nature journal content. We may
also use these personal data internally within ResearchGate and Springer Nature and as agreed share
it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not otherwise
disclose your personal data outside the ResearchGate or the Springer Nature group of companies
unless we have your permission as detailed in the Privacy Policy.
While Users may use the Springer Nature journal content for small scale, personal non-commercial
use, it is important to note that Users may not:

use such content for the purpose of providing other users with access on a regular or large scale

basis or as a means to circumvent access control;

use such content where to do so would be considered a criminal or statutory offence in any

jurisdiction, or gives rise to civil liability, or is otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association

unless explicitly agreed to by Springer Nature in writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a

systematic database of Springer Nature journal content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a
product or service that creates revenue, royalties, rent or income from our content or its inclusion as
part of a paid for service or for other commercial gain. Springer Nature journal content cannot be
used for inter-library loans and librarians may not upload Springer Nature journal content on a large
scale into their, or any other, institutional repository.
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not
obligated to publish any information or content on this website and may remove it or features or
functionality at our sole discretion, at any time with or without notice. Springer Nature may revoke
this licence to you at any time and remove access to any copies of the Springer Nature journal content
which have been saved.
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or
guarantees to Users, either express or implied with respect to the Springer nature journal content and
all parties disclaim and waive any implied warranties or warranties imposed by law, including
merchantability or fitness for any particular purpose.
Please note that these rights do not automatically extend to content, data or other material published
by Springer Nature that may be licensed from third parties.
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a
regular basis or in any other manner not expressly permitted by these Terms, please contact Springer
Nature at

onlineservice@springernature.com

mailto:onlineservice@springernature.com

