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Abstract—Artificial intelligence-based medical image analysis 

promises an efficient and reliable diagnosis in today’s healthcare. 

Traditional approaches for cataract screening by medical 

practitioners often results in subjectivity due to their varying 

levels of knowledge and expertise. Using transfer learning, 

ensembles of pre-trained convolutional neural networks, and 

stacked long short-term memory networks, we developed a non-

invasive and streamlined pipeline for automatic cataract severity 

classification. Empirical results show that our proposed 

combined models of AlexNet, InceptionV3, Xception, and 

InceptionResNetV2 using a weighted average algorithm produces 

99.20% (normal vs. cataract) and 97.76% (normal to severe) 

accuracies compared to standalone models. Furthermore, the 

ensemble model reduces classification error rates by an average 

of 2.17%. This study has the potential to help doctors to specify 

the magnitude of cataract stages with highly acceptable precision. 

Keywords—combined models, image processing, long short-

term memory networks, convolutional neural networks, machine 

learning, transfer learning 

I.   INTRODUCTION 

Cataracts are the primary cause of visual impairment and 
blindness.  Its occurrence clouds and prevents light from 
reaching the eye’s crystalline lens, resulting in decreased 
visual function. According to World Health Organization 
(WHO), over 295 million (M) individuals worldwide suffer 
from this condition, with 41 M having a permanent and the 
rest (77%) with limited sight [1]. Statisticians reveal that by 
2025, it will reach 43 M instances, bolstered chiefly by third-
world countries that lack professional ophthalmologists. The 
startling numbers demonstrate that the eye care system has not 
improved significantly over the last decades, and there is still 
an urgent need to enhance its diagnosis promptly. It is 
treatable through early identification, averting costly surgical 
operations, yet it accounts for the lion’s share (33%) of 
blindness cases more than glaucoma and diabetic retinopathy 
[2].  

Due to the wide range of lesions, eye tones, dimensions, 
structures, and positions, cataract detection using various 
approaches is a challenging task. Visual acuity tests, although 
non-invasive, present inaccuracies due to a doctor’s subjective 
experiences [3]. Meanwhile, slit-lamp and retro-illumination 

microscopy can provide needed accuracy, but it discomforts 
photophobic patients due to their high illumination [4]. A 
retinal exam also creates an uneasy experience where a doctor 
puts eye drops to dilate a patient’s pupil to find eye blockage 
signs. Applanation tonometry is another alternative 
identification process through measuring the eye’s fluid 
pressure [5]. Many people find the procedures mentioned 
above intrusive, complex, and expensive. Specialists today 
highly recommend the low-cost, non-invasive nature of fundus 
images as it provides lofty retinal structural details against 
other forms of imaging, resulting in an accurate prognosis. 
Cataracts are identified and graded into five categories using 
fundus images based on the percentage (degree) of obscured 
retinal space shown in Table 1 and Fig. 1. 
 

TABLE I.  CATARACT GRADES [6] 
 

Retinal space obscurities (%) Category 

< 3 Grade 0 (normal) 

4 to 35 Grade 1 (mild) 

36 to 55 Grade 2 (moderate) 

56 to 85 Grade 3 (pronounced) 

> 85 Grade 4 (severe) 

 

Nevertheless, there are many obstacles related to fundus 
photographs for cataract assessments. Numerous researches 
relied on complex, labor-intensive, and time-consuming 
manual feature extraction for its evaluation and classification. 
Moreover, ophthalmologists have varying evaluations even 
with considerable knowledge and experience. These 
deviations are rooted in an individual’s subjectivity. Thus, an 
automated system for identifying and grading eye abnormality 
is necessary. 
 

 
Fig. 1. Medical cataract grades based on retinal vascular obscurities. 
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Literature indicates considerable progress in classifying 
retinal illnesses [7] [8] due to multiple methods for cataract 
grading and detection using fundus images. Traditional 
methods for diagnosis relied heavily on optical coherence 
tomography (OCT) based on human-engineered features such 
as lens density, anterior surface curvature, and retinal opacity 
[9]. However, these features do not always correspond to 
clinical observations and may not be able to give an accurate 
diagnosis. Authors [10] obtained wavelet properties and 
utilized principal component analysis to minimize feature 
dimensions for machine learning (ML) categorization. The 
work of [11] used a histogram’s gradient via a minimal 
distance classifier. Researchers [12] developed a supervised 
paradigm (extraction and weighting) for features such as 
wavelet, texture, and color using genetic algorithms (GA) and 
support vector machines (SVM). Several approaches classified 
different cataract grades from vitreous opacity using standard 
deviation and pixel-based structure visibility relying on 
decision trees. On the other hand, proponents [13] prioritized 
vessel vascular information for severity distinctions using 
template filter and SVM. These approaches select a subset of 
attributes in a single path, which is unsuitable for acquiring all 
of the intricacies of the input image, resulting in 
unpredictability.  Experiments of [14] presented an enhanced 
Haar wavelet and added details through vertical, horizontal, 
and diagonal directional textures based on ensemble hard-
voting classification exhibiting increased accuracy. Other 
pattern recognition is spectrum-based, utilizing two-
dimensional discrete Fourier transform and linear discriminant 
analysis (LDA) with AdaBoost [15]. 

Deep learning (DL) gained prominence in the science of 
computer vision and image processing in recent years [16], 
and convolutional neural networks (CNN) are the most 
prevalent for the analysis of visual information.  In contrast to 
standard ML models, it does not necessitate any user 
involvement throughout the feature extraction process. The 
study of [17] delivers cataract screening by getting local filters 
through patched-based clustering with CNN and recurrent 
neural networks (RNN) for retrieving higher-order features. 
They utilized support vector regression for grading. Author 
[18] presented a multi-layered CNN in evaluating cataracts, 
integrating feature maps from the architecture’s pooling layers 
with time efficiency and accuracy of 93.52% and 86.69%. A 
complex proposal of [19] consists of a six-level classification 
employing a mix of CNN and random forests (RF) for 
assisting specialists in precisely understanding a patient’s 
condition. The framework includes three modules yielding a 
90.69% accurate extraction of fundus image characteristics. 
An article by [20] used the Res-Net classifier model for 
automatic cataract identification resulting in 95.77% accuracy, 
while a VGG-19 with a transfer learning approach obtained 
97.47%. We noted that the numbers of existing works were 
based entirely on manual, traditional machine, and deep 
learning approaches. Current methods have significant 
limitations since eye specialists must confirm their vascular 
features, which is a tedious and time-consuming process based 
on their knowledge and experience subjectivity. In addition, 

robustness and generalization are compromised by using a 
small dataset.  

Our scientific contribution is creating a new strategy to 
locate the eye’s vascular features precisely by taking into 
account the long-distance dependencies of the fundus image 
and improving cataract identification with five 
compartmentalized grading using transfer learning and hybrid 
neural networks. This study’s end-to-end pipeline can support 
ophthalmologists diagnose cataracts quickly and reliably with 
minimal physical involvement. 

II.   METHODOLOGY 

The following section explains how to identify and assess 
cataract severity automatically - including dataset, 
preprocessing, data augmentation, transfer learning methods, 
CNN and RNN models, hyperparameter optimizations, 
ensemble technique, and evaluation metrics. 

A. Data Acquisition and Image Preprocessing 

We gathered 2500 high-resolution fundus photos from 
various cataract retinal archives [21 – 26]. These images are 
professionally annotated into five categories, ranging from 0 
to 4 (see Table 1) based on severity levels, with 500 samples 
for each group. Using a reasonable and well-balanced dataset 
with huge samples is essential in improving training and 
validating deep learning-based models. With images compiled 
from different repositories, their sizes vary, and they are not 
adapted uniformly to the learning task. Thus, we downsized 
the images into equal sizes with 2048 x 2048 pixels. The 
luminance of the red-green-blue (RGB) image’s channels was 
also normalized between 0 and 1 to ensure a consistent 
distribution before network training, hence accelerating 
convergence. Equation 1 depicts the min-max scaling:  
 

�′ =
� − ��� (�)

���(�) − ��� (�)
 

 

Where x and �′ reflect the entire intensity range of 0 to 255 
and normalized values (0 – 1) of the cataract images, while the 

���(�) and ��� (�) denote the original images’ highest and 
lowest intensities. In our investigation, we discovered that the 
green channel (Fig. 2) makes image extraction straightforward 
and efficient; it gives more details due to luminosity and cuts 
computational time by a factor of 0.2512. 
 

 
Fig. 2. Images in red (a), green (b), and blue (c) channels, where the green 
color space produces a lot of details for cataract feature extraction. 

B. Data Augmentation 

The lack of comprehensive medical image data for training 
is a significant obstacle in advancing pattern recognition, as it 

(1) 
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directly impacts DL performance. Hence, to address the 
inadequacies, data enlargement or augmentation is necessary. 
We applied several geometric modifications, including 
resizing, rotating (0 to 180 degrees randomly), shifting (based 
on a reference point), and flipping (horizontal & vertical) to 
obtain an additional 10000 data for a total of 12500 images. 
Implementing this procedure is a viable solution to avoid 
overfitting and boost the network’s predictive capability. 
Using 10-fold cross-validation, we split the dataset into 80/20 
training and testing portions for modeling. 

C. Transfer Learning 

There is a strong correlation between the dataset’s size and 
the quality of deep learning models. Nevertheless, in most 
cases, it is hard to handle huge samples of data effectively. To 
circumvent this problem, we employed a transfer learning 

(TL) mechanism pre-trained on large-scaled data such as 
ImageNet [27]. The premise of TL is to use previously 
accumulated information to enhance a model’s performance to 
get better outcomes. Typical of a standard ML, TL-based 
methods are intended to handle particular concerns and other 
pertinent problems such as network retraining through 
hyperparameter optimization. It retains the primary network 
and leverages the pre-trained weights for its modification. 
Initialization weights of the network are continuously altered 
to acquire task-specific features. Several kinds of research [28] 
[29] have shown that fine-tuning methodologies apply aptly to 
various medical image classification applications. Fig. 3 
illustrates the process flow of TL. Based on our experiment, 
we deployed four top-performing CNN architectures 
explained in the following sections. 
 

Fig. 3. Images are subdivided into 16 patches fed to various CNN models to extract features. A global average pooling combines the derived attributes 
and classified (image-wise) [41] by stacked LSTMs in terms of detection (normal vs. cataract) and grades (normal to severe).

D. AlexNet 

It was the first CNN architecture to incorporate extra 
layers to a DL network, making it a superior design. It 
signifies that it has superb image-learning capability than prior 
models, which were confined only to one or two layers [30]. 
In addition, it exceeded its predecessors by substituting 
sigmoid functions in the hidden layers with rectified learning 
units (ReLU) that are computationally efficient while using 
smaller memory. It achieves the feats through the following. 
First, the five convolutional layers are the essential element of 
its structure since they help identify patterns through each 
pixel of an image which parts are meaningful and which is 
not. Second, the three max-pooling layers assist in identifying 
characteristics with fewer computations than the convolutional 
layers. Third, two fully connected layers with 0.5 dropout 
rates enable the network to forecast what object it believes to 
be present in an image based on all of its past estimations from 
the two previously stated layers. The architecture paved the 
groundwork for future advancements in computer vision by 
winning the 2012 ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC). Fig. 4 shows the AlexNet’s constructs 
for this study. 

 

 
Fig. 4. AlexNet’s architecture with five convolutions, three max-pools, two 
fully-connected layers, and a softmax activation function. 

E. Inception 

The network is a predecessor to the original inception 
design (GoogleNet), achieving superior efficiency through 
introducing inception modules - its most fundamental 
component. By reducing features using layered (1 x 1) 
convolution, the modules ensure faster calculations and deeper 
networks by utilizing auxiliary classifiers to address 
overfitting issues. The fundamental premise is to execute 
multiple filters with varying sizes concurrently rather than 
sequentially. Integrating an additional layer makes the 
architecture computationally cheap yet reliable [31]. We used 
a pre-trained InceptionV3 [32] model with the configurations 
of ‘imagenet’ (weight) and input shape (224, 224, 3). The 
stack constitutes the global average pooling 2D, dense blocks, 
and batch normalization layers. We then configured two ReLU 
activation functions for each dense block to allow the model to 
learn swiftly, with better precision, and overcome the 
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vanishing gradients predicament. A simplified block diagram 
is shown in Fig. 5(a). 

F. Xception 

The model takes the Inception concepts to an extreme 
degree, transforming how we view neural nets and forming the 
backbone of all future network designs. It displaces modules 
with ‘depthwise separable convolutions’, consisting of a 
spatial convolution performed separately for each channel, 
followed by a 1 x 1 point-wise convolution across channels. 
This sensible design varies regarding operation sequence and 
non-linearity existence or absence. By integrating individual 
layers with subsequent output layers (shortcuts), a significant 
performance improvement is achieved not due to an increase 
in capacity but through the efficient utilization of parameters 
[33]. We purposively benchmarked an Xception model 
because of the limited implementation of cataract disease 
diagnosis on a large-scale dataset. Fig. 5(b) illustrates our 
research implementation of the architecture. 

G. InceptionResNet 

This network architecture is a hybrid of Inception and 
ResNet (InceptionResNetV2), the two most renowned deep 
CNNs. Instead of summation, batch normalization is used for 
the convolutional layers. Leveraging the leftover modules 
enables a more significant number of Inception blocks, 
resulting in a system with outstanding precision and depth but 
additional computational costs [34]. As reported earlier, the 
training phase is the most evident issue associated with deep 
networks. Its conundrum is resolved using residual 
connections. While many filters are applied in a system, the 
residual is decreased to manage the training problem 
successfully. In an instance of more than one thousand 
strainers, residual fluctuations become volatile. Thus, the 
network cannot be adequately trained. As a direct 
consequence, residuals support the network in training 
stabilization. Fig. 5(c) represents our scaled implementation of 
the network. 
 

 
Fig. 5. Block diagrams of InceptionV3 (a), Xception (b), and 
InceptionResNetV2 (c). 

H. Image-Wise Method 

Images used in healthcare are often high-resolution 
photographs, which include and retain finer details. The DL 
pipeline used for training is supplied with these files in their 
entirety. Due to its enormous size, it is necessary to fragment 
original data into smaller pieces. The primary difficulty is 
combining each minor patches outcome before image 
classification [35]. The SVM and majority voting are the 
conventional solutions for this problem, which are 
straightforward and uncomplicated. Although this method 
feeds a single image into the network, it does not conserve the 
context of the entire picture. To preserve the contextual 
information, we proposed context-aware learning. It is a 
procedure that flattens numerous features into a single vector 
received from patch-wise implementation, which has a 
drawback for spatial characteristics. In the patch likelihood 
fusion method, the first level patch-wise network pulls out 
spatial attributes, and then the image-wise network 
accomplishes categorization. The approach has the foremost 
disadvantage of not preserving the remote contextual 
information. 

We used a recurrent neural network (RNN) for 
classification in confluence with a CNN to keep track of the 
contextual information to fix the stated problem. Our 
suggested strategy is to obtain patch-wise features using CNN 
while the RNN collects dependencies. For cataract detection 
and grading, we employed a bidirectional long-short term 
memory (BLSTM). It improves learning performance by 
traversing input sequences in both forward and backward 
orientations, hence extending the capabilities of standard 
LSTMs. Fig. 6 exhibits the structure of a BLSTM. 
 

 
Fig. 6. A structure of a bidirectional long short-term memory network. 
 

As headway, our study implemented a stacked LSTM (S-
LSTM) for cataract detection and grading (Fig. 7). Increasing 
layers through stacking generate additional levels of data 
abstraction in decoding complicated sequences and 
classification tasks [36] [37]. It is achieved by integrating 
accumulated learned patterns throughout each layer as 
subsequent input to other LSTM layers. In this view, the 
BLSTM is a suitable option for the top layers of a DL model 
for the acquisition of helpful knowledge responsively (Fig. 7). 
In this research, we applied several CNNs to extract 25 vector 
features from a fundus image fed to an S-LSTM for image-
wise cataract classification shown in Fig. 3. 
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Fig. 7. Stacking configuration for cataract classification utilizing two 
bidirectional LSTMs and one unidirectional LSTM. 

I. Hyperparameter Optimizations 

For any machine learning to perform efficiently, 
hyperparameter tuning is critical. These configurations, unlike 
model parameters, are initialized before training. It is currently 
among the most daunting and neglected steps in implementing 
deep neural network modeling. For this study, we employed a 
sequential-based optimization technique [38] because of the 
manual configuration’s complexity and time-intensive cost. 
Tables 2 and 3 convey the average calibrated settings for CNN 
and RNN models based on multiple run times. 
 

TABLE II. NEURAL NETWORKS’ OPTIMIZED HYPERPARAMETERS 
 

Architecture Configuration Value 

AlexNet Learning rate 
Decay 
Batch size 
Shuffling 
Optimizer 
Loss 
Epoch 
Environment 

0.001 
0.001/epoch 

32 
Per epoch 
ADAM 

Multiclass cross-entropy 
120 
GPU 

InceptionV3 

Xception 

InceptionResNetV2 

 

TABLE III.  STACKED LSTM’S OPTIMIZED HYPERPARAMETERS 
 

Training Data Configuration Value 

Cataract Detection 

Learning rate 
Batch size 
Dropouts 
Dense layer 
BLSTM (1) neurons 
BLSTM (2) neurons 
LSTM neurons 
Loss 
Optimizer 
Epoch 
Activation function 

0.001 
16 
0.2 
1 

84 
72 
62 

Binary cross-entropy 
ADAM 

200 
RELU 

Cataract Grading 

Learning rate 
Batch size 
Dropouts 
Dense layer 
BLSTM (1) neurons 
BLSTM (2) neurons 
LSTM neurons 
Loss 
Optimizer 
Epoch 
Activation function 

0.001 
16 
0.2 
1 

98 
84 
78 

Multiclass cross-entropy 
ADAM 

200 
RELU 

Note: BLSTM (bidirectional), LSTM (unidirectional) 

J. Ensemble Techniques 

Ensemble modeling is an approach for determining 
outcomes using diverse base models. Adopting the technique 
diminishes prediction generalization errors. By aggregating 
the predictive capability of its members, it can deliver insights 
with more objectivity and accuracy. In addition, it minimizes 
bias and variance by assigning weights to attributes that 
contribute to reliability and robustness. We implemented a 
weighted ensemble algorithm, a unique form of average 
operation where outputs are multiplied by a weight and then 
linearly combined [39]. Each weight reflects the individual 
contribution of each model to the final output. Its distinction is 
that the weights are not predetermined, but their values are 
refined during the training phase. The only constraint is that 
their weight’s sum must be equal to 1, but it is resolved 
quickly by applying a softmax function [40]. 

K. Evaluation Criteria 

Accuracy by itself is insufficient for measuring a model’s 
efficacy. In addition to the standard metric, we assessed the 
performance of different pre-trained deep learning 
architectures in terms of their precision, recall, specificity, 
Matthew’s correlation coefficients (MCC), and confusion 
matrices. The succeeding equations summarize the evaluation 
criteria based on the number of TP (true positives), TN (true 
negatives), FP (false positives), and FN (false negatives).   
 

�

���
� (��) =  
�� + ��

�� + �� + �� + ��
 

 

���
����� (��) =  
��

�� + ��
 

 

��
��� (��) =  
��

�� + ��
 

 

���
���
� � (��) =  
��

�� + ��
 

 

!�� =  
�� � �� − �� � ��

"(�� + ��)(�� + ��)(�� + ��)(�� + ��)
 

III.   RESULTS 

We performed all tests using a high-end computer with the 
following specifications: Core i9-11900K processor (5 GHz & 
16MB smart cache), 64GB DDR4 RAM, and an ASUS 
RTX3070 (1.73 GHz with 8GB DDR6) graphics card. Data 
preprocessing, augmentation, and neural network models were 
enforced with Python, TensorFlow, and Keras. The following 
sections detail the results. 

A. Layer Stacking Effects on Learning Stabilization 

Fig. 8 tracks the convergence loss of various S-LSTM 
variations versus the amount of epochs. Our experiment 
required more time for a stack of three LSTMs to reach 
equilibrium compared to lesser heaps. However, it can deliver 
stable results. We also observed that BLSTM on the primary 
layers (first and second) enhanced the model’s performance. 

(2) 

(3) 

(4) 

(5) 

(6) 
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Finally, a steadily diminishing number of neurons for each 
layer is beneficial (see Table 3) as the upper layers’ task is to 
understand the overall input structure before transferring it to 
the successive layers for further processing. 
 
 

 
Fig. 8. Convergence loss plots of different stacking configurations. 

B. Ensemble Model Weights 

Table 4 presents each network’s contribution to cataract 
detection and grading using a weighted average ensemble 
based on test data. The computation shows that 
InceptionResnetV2 (in bold format) attains the highest 
throughput (0.52 & 0.45) and contributes almost half of the 
weight for the ensemble. This architecture implements 
residual connections on the network, which is essential when 
dealing with nonlinear patterns. Xception (0.22 & 0.25) and 
InceptionV3 (0.14 & 0.21) shared moderately while the 
AlexNet (0.12 & 0.09) imparts the least weight. 
 

TABLE IV. INDIVIDUAL MODEL’S CONTRIBUTORY WEIGHTS 
 

Cataract Data 

(Training/Testing) 

Network Contributions 

AlexNet InceptionV3 Xception InceptionResNetV2 

Detection a 
(2500/500) 0.12 0.14 0.22 0.52 

Grading b 
(12500/2500) 0.09 0.21 0.25 0.45 

a. 500 test data comprises a well-balanced dataset with 250 for each category (Normal and Cataract) 

b. 2500 test data comprises a well-balanced dataset with 500 for each category (Grade 0 to 4) 

C. Cataract Detection Performance 

Table 5 proves that the ensemble trumps individual models 
with an overall accuracy of 99.20%. It also exceeded the 
predictive capability of other architecture with 99.60% 
(precision), 98.80% (recall), 99.60% (specificity), and 98.40% 
(MCC). The AlexNet ranked last, yet with satisfactory 
accuracy of 94.60%. 
 

TABLE V.  CATARACT DETECTION PERFORMANCE (NORMAL VS. CATARACT) 
 

Model 
Evaluation Metrics 

Accuracy Precision Recall Specificity MCC 

AlexNet 1 5 0.946 0.970 0.917 0.978 0.894 

InceptionV3 2 5 0.964 0.988 0.942 0.987 0.920 

Xception 3 5 0.976 0.992 0.961 0.991 0.952 

InceptionResNetV2 4 5 0.980 0.992 0.968 0.991 0.960 

Ensemble (1,2,3,4) 5 0.992 0.996 0.988 0.996 0.984 

5. Stacked LSTM (see Fig. 7 and Table 3) 

D. Cataract Grading Performance 

The results in Table 6 demonstrate the ensemble 
superiority to single models with an accuracy of 97.76%. In 
addition, it surpassed the predictive ability of other networks 
by 97.78% (precision), 97.76% (recall), 99.43% (specificity), 
and 97.20% (MCC). Similar to cataract detection, the AlexNet 
performs the least with 94.44% grading accuracy. 
 

TABLE VI.  CATARACT GRADING PERFORMANCE (NORMAL TO SEVERE) 
 

Model 
Evaluation Metrics 

Accuracy Precision Recall Specificity MCC 

AlexNet 1 5 0.9444 0.9449 0.9444 0.9861 0.9305 

InceptionV3 25 0.9600 0.9607 0.9600 0.9890 0.9501 

Xception 3 5 0.9632 0.9634 0.9632 0.9908 0.9540 

InceptionResNetV2 4 5 0.9712 0.9714 0.9712 0.9928 0.9640 

Ensemble (1,2,3,4) 5  0.9776 0.9778 0.9776 0.9943 0.9720 

5. Stacked LSTM (see Fig.  7 and Table 3) 
 

We then quantify confusion matrices (see Table 7) to 
provide in-depth detail of each network’s classification 
performances. It shows that most mean prediction errors (vice-
versa) came from pronounced-severe (3.74%), followed by 
normal-mild (2.68%), mild-moderate (2.20%), and moderate-
pronounced (1.03%). There are zero occurrences of 
misclassification for normal-moderate, normal-pronounced, 
normal-severe, mild-pronounced, mild-severe, and moderate-
severe. This clearly shows each model’s generalization 
robustness in discerning stages of cataracts, more importantly, 
the ensemble method. 
 
TABLE VII.  CONFUSION MATRICES FOR CATARACT GRADING (TEST DATA) 

 

Ensemble 
 Normal Mild Moderate Pronounced Severe 

Normal 489 11 0 0 0 

Mild 8 490 2 0 0 

Moderate 0 11 488 1 0 

Pronounced 0 0 0 489 11 

Severe  0 0 0 12 488 

InceptionResnetV2 

 Normal Mild Moderate Pronounced Severe 

Normal 485 15 0 0 0 

Mild 7 487 6 0 0 

Moderate 0 10 486 4 0 

Pronounced 0 0 0 486 14 

Severe  0 0 0 16 484 

Xception 

 Normal Mild Moderate Pronounced Severe 

Normal 483 16 1 0 0 

Mild 9 482 9 0 0 

Moderate 0 13 480 7 0 

Pronounced 0 0 1 482 17 

Severe  0 0 0 19 481 

InceptionV3 

 Normal Mild Moderate Pronounced Severe 

Normal 479 18 3 0 0 

Mild 10 479 11 0 0 

Moderate 0 16 476 8 0 

Pronounced 0 0 0 479 21 

Severe  0 0 0 23 477 

AlexNet 

 Normal Mild Moderate Pronounced Severe 

Normal 472 25 3 0 0 

Mild 15 472 13 0 0 

Moderate 0 19 471 10 0 

Pronounced 0 0 0 474 26 

Severe  0 0 0 28 472 
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E. Ensemble Training/Validation Loss and Accuracy 

Fig. 9(a) indicates that the training loss commenced at an 
average of 0.57 logarithmic values, whereas the validation loss 
is at 0.75. An increasing convergence was achieved at epochs 
60 to 100, and it stabilized at the 115th epoch. On the other 
hand, Fig. 9(b) demonstrates a gradual convergence at epochs 
80 to 100, achieving the highest training accuracy of 98.77% 
(106th epoch) and validation accuracy of 98.68%. Both graphs 
empirically confirm that the ensemble model did not over or 
underfit in grading cataracts. 
 

 
Fig. 9. Cataract classifications training & validation loss (a), and training & 
validation accuracy (b) for the ensemble model. 

IV.   DISCUSSIONS 

This study proved the adaptive capacity of compounded 
pre-trained CNNs, stacked LSTMs, and transfer learning in 
boosting the performance of cataract diagnosis and grading 
through advanced procedures. The quantitative findings 
indicate that the ensemble model transcends the AlexNet, 
InceptionV3, Xception, and InceptionResnetV2 architectures, 
with mean collective prediction reliability for unseen data of 
99.20% and 97.76%. Moreover, our pipeline cuts 
identification and categorization error rates by an average of 
2.55% and 1.79%, respectively. In this experiment, we 
highlighted the integration of unique strengths and 
characteristics of various CNN models. The marked 
improvement in predictive power is the result of sequential-
based optimization, layer stacking configurations, 
convergence loss plot, training-validation loss & accuracy 
analysis during the ensemble’s training phase using a 
weighted average algorithm. Model optimization is time-
consuming and expensive in terms of computational resources. 
Despite these disadvantages, we are convinced in our assertion 
that the benefits exceed the downsides. Our research’s 
outcome advances the findings of [41 - 45], and we are 
confident that our deep learning-based medical image 
processing framework applies to other similar domains [46]. 
Like any research, we have experienced the challenges of 
noisy and insufficient fundus image quality (e.g., lousy 
lighting & luminance) contributing to classification 
divergences. This study did not investigate algorithms for 
offsetting these issues, such as image enhancements and 
reconstructions. 

V.   CONCLUSIONS AND FUTURE WORK 

Cataracts are the foremost contributor to vision 
impairments worldwide. If left undiagnosed and untreated, it 
can lead to irreversible and permanent blindness. Eye expert’s 
planning decisions upon its treatment must be based on a 
timely, rapid yet dependable prognosis. Conventional 

procedures of cataract screening and assessment are laborious. 
It is a time-consuming mechanical practice vulnerable to 
disparities among doctor’s subjective experiences for each 
case. In some instances, diagnosis proved to be difficult using 
only the naked eye due to the inadequate quality of fundus 
images. 

We developed a minimally invasive end-to-end pipeline for 
identifying and classifying cataracts leveraging ensembles of 
pre-trained CNNs and an S-LSTM classifier with transfer 
learning augmentation. Our test results indicated superior 
accuracy and coherence between experts’ cataract evaluations 
against the machine learning model with minor deviations. We 
contributed to the advancement of deep-learning medical 
image analysis by developing a sound and streamlined 
approach for the automatic recognition and grading of 
cataracts. This research has the potential to improve clinical 
practice in understanding cataract severity and their 
appropriate treatments. The proponents intend to incorporate 
image enhancement techniques and benchmark other CNNs in 
the future to improve the performance further. 
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